自动驾驶汽车如何「看到」红绿灯?

作者 | StevenYu  编辑 | 汽车人

原文链接:https://www.zhihu.com/question/47594911/answer/2070091180

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【目标检测】技术交流群

本文只做学术分享,如有侵权,联系删文

这题我会,先讲一下"看到"红绿灯的难点。

难点1:小物体检测

红绿灯检测属于小物体检测问题,在一副图像上所占的像素比极小,并且不同于车辆,行人的检测,红绿灯所能提取的特征有限,基本上是颜色特征,这个对设计神经网络的特征提取提出极大的挑战。还需从其它角度考虑,如红绿灯的位置始终在高处,红绿灯的时序信息等去判断;另外对于相机的选型也有要求,选择fov小的,聚焦功能好,所检测的距离远,但视野范围小;选择fov大的,视野范围大,但检测距离近,所以可能会配合两个甚至多个不同fov大小的相机来检测红绿灯,这又会涉及到多个相机融合的难点问题。

难点2:红绿灯实时变化

虽然跟交通标志牌类似,都属于静态物体检测,但红绿灯的状态是实时发生变化的,这提升了检测的难度。此外,在不同光照条件下,红灯和黄灯的相似度很接近,甚至人眼都难以区分,只能根据灯的位置信息来区分。另外不同地区的红绿灯设计方式,展现形式不一样,如天津地区的条形展现形式,这就对红绿灯的数据采集提出更多的挑战,要覆盖更多场景,增加了采集成本,同时对检测网络提出了更高的要求,具备更强的泛化性。

0935fc91a115acbe582fbbfa34f873e4.png
天津进度条红绿灯

难点3:红绿灯的倒计时

红绿灯还会有倒计时的问题,在检测到红绿灯状态的同时,对数字的倒计时同样需要进行检测。此外同一个交叉路口,存在多个不同状态下的红绿灯,对这么多类型的红绿灯检测,就算是人可能也没办法区分清楚,需要配合一定的经验。而对于机器来说,它需要的是短时间能做出判断,难度极大。

难点4:红绿灯的漏检和误检

难点4:仅凭感知层面的红绿灯检测是远远不够的,一容易误检,漏检,这对决策规划层有极大的影响,红灯识别成绿灯,继续往前开,想想都是很危险的。所以需要结合高精度地图,以及V2x技术来解决,一方面高精度地图提供当前的车所在的车道信息和距离红绿灯的远近信息,V2x技术可以感知车辆红绿灯的状态信息,再配合感知检测的备份冗余,才能准确的实现红绿灯的检测问题。

实现方案:

通过感知去识别红绿灯,有一种舍身取义的感觉,效果一般,适应性差,条件允许的话(如固定园区限定场景),该装V2X就装V2X,多个备份冗余,V2X > 高精度地图 > 感知识别。若碰上GPS信号弱的时候,感知识别可以出场了,大部分情况,V2X足以Cover掉大部分的场景。感知方案的具体实现参照文章,主要为红绿灯数据集采集,标签处理,检测模型训练,算法部署,追踪后端优化,接口开发

74228c39cb962425843c22f8cf4f196d.png d53d32a866b1edb2427253892bcc5776.png

总结:

所以可以看出,在我们日常生活中不起眼但是在城市道路不可或缺的红绿灯,要达到量产级别的检测识别,难度是相当大的,涉及到不同地区的场景,光照条件的影响,多种技术(高精度地图/V2x/感知)的融合多相机的融合等,难度远远超过车辆行人的检测,所以红绿灯问题难度大,棘手,又是在复杂城区智能驾驶不可回避的一个问题。

通过单车智能的方式去感知红绿灯难度太大,而且不能保证100%的识别成功率,红绿灯的误识别后果影响很严重,所以智能交通基础设施建设需要及时跟上,包括红绿灯的智能化、动态道路分配、智能路网设计等;这就需要得到城市政府部门的支持,能够获得城市路网的检测数据,同时对获得到数据的分析能力,高频次的流动车的数据,位置信息,需要极佳的信号灯控制算法及产品才能把优势发挥出来。

效果:

e577cd5c09a4e4255f7d0be4937acc4f.png 8c350dc270fba5a2d9a6c7c2338ccd1b.png

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码学习)

1f6b53b7e2541b36a3fd103ede79e1b9.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

832381189be4b7b394ec55ebff08d255.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

22d8d5babd5102933cf12dc7fac01568.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

d25ec6c17acb89530db855fdc7bd6c68.jpeg

### 自动驾驶红绿灯检测的技术实现方法 #### 一、基于视觉的红绿灯检测与识别自动驾驶场景下,红绿灯检测主要依赖于车载摄像头获取的道路图像数据。为了提高检测精度并适应不同条件下的变化,在Apollo 6.0版本中采用了多种先进的计算机视觉技术来处理这一任务[^1]。 对于较远距离处的小目标红绿灯而言,传统的目标检测模型可能难以有效工作。为此,研究人员开发了专门针对此类情况优化过的算法框架,通过增强特征提取能力以及引入多尺度融合机制等方式提升对小型物体尤其是远处红绿灯的检出率和分类准确性[^2]。 ```python import torch from torchvision import models, transforms from PIL import Image def load_model(): model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True) model.eval() return model transform = transforms.Compose([ transforms.ToTensor(), ]) image_path = "traffic_light.jpg" model = load_model() with open(image_path, 'rb') as f: img = Image.open(f).convert('RGB') img_tensor = transform(img) output = model([img_tensor]) boxes = output[0]['boxes'].detach().numpy() labels = output[0]['labels'].detach().numpy() scores = output[0]['scores'].detach().numpy() ``` 上述代码展示了如何加载预训练好的Faster R-CNN模型来进行基本的对象检测操作,这可以作为初步筛选潜在红绿灯位置的基础工具之一。然而实际应用还需要进一步定制化调整以满足特定需求。 #### 二、利用高精地图辅助提前预测红绿灯存在性 考虑到仅依靠实时影像可能存在延迟风险,现代高级别自动驾驶解决方案还会结合使用高清电子地图信息预先判断前方路段可能出现的信号设施分布状况。具体来说就是当车辆接近某个路口之前就已经启动相应的传感器模块准备接收即将到来的变化提示[^4]。 这种做法不仅有助于改善整体系统的响应速度和平顺度表现;同时也能够在一定程度上缓解因恶劣天气或其他因素造成的视线受阻问题带来的挑战。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值