地平线最新!MapTRv2:端到端实时SOTA的在线矢量化高精地图构建方法

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

今天自动驾驶之心为大家分享地平线在局部高精地图构建上的最新工作—MapTRv2!如果您有相关工作需要分享,请在文末联系我们!

>>点击进入→自动驾驶之心【高精地图】技术交流群

论文作者 | 廖本成

编辑 | 自动驾驶之心

87458cb6cb83952319000d92e25c1b2a.png

开源地址:https://github.com/hustvl/MapTR

大家好,很开心能够受邀来自动驾驶之心分享我们最近对局部高精地图构建的改进方案—MapTRv2。下面将会给大家详细介绍MapTR的设计思路与实验。

高精地图提供了丰富而精确的驾驶场景静态环境信息,是自动驾驶系统规划的重要组成部分。继去年提出MapTR后,我们一直在思考局部高精地图应该如何进一步改进,于是进一步提出了一种用于在线矢量化高清地图构建的端到端框架MapTRv2。MapTRv2提出了一种统一的置换等价建模方法,即将地图元素建模为具有一组等价置换的点集,它准确地描述了地图元素的形状,并稳定了学习过程。我们设计了一种分层查询嵌入方案,对结构化地图信息进行灵活编码,并对地图元素学习进行分层二分匹配。为了加快收敛速度进一步引入了辅助的一对多匹配和密集监督。所提出的方法很好地处理了具有任意形状的各种地图元素。MapTRv2可以实时运行,并在nuScenes和Argoverse2数据集上实现了最先进的性能。丰富的定性结果表明,在复杂多变的驾驶场景中,地图构建质量稳定、稳健。

e18f0a7fa6dd01ab0ede5dcecad65546.png

论文贡献

总结来说,我们提出的MapTRv2主要有以下几点贡献:

  • 提出了一种统一的地图元素置换等价建模方法,即将地图元素建模为具有一组等价置换的点集,该方法准确地描述了地图元素的形状,并稳定了学习过程;

  • 在新建模的基础上,我们提出了一个结构化的端到端框架,用于高效的在线矢量化高清地图构建。我们设计了一种分层查询嵌入方案,对实例级和点级信息进行灵活编码,并对地图元素学习进行分层二分匹配。为了加快收敛速度,我们进一步引入了辅助一对多匹配和辅助密集监督;

  • 我们的方法是第一种实时和SOTA矢量化的高精地图构建方法,在复杂和各种驾驶场景中具有稳定和稳健的性能。

MapTRv2是ICLR 2023上发表的MapTR的扩展。与前一版本相比改进如下:

  • 首先,我们引入了为分层查询机制量身定制的解耦自注意力,这大大减少了内存消耗并带来了收益;

  • 其次,我们引入了辅助的一对多集预测分支来加快收敛速度;

  • 第三,我们在透视图和鸟瞰图上都采用了辅助密集监督,这大大提高了性能;

  • 第四,MapTRv2将MapTR扩展到建模和学习centerline,这对下游运动规划非常重要;

  • 第五,我们对所提出的模块进行了更多的理论分析和讨论,更多地揭示了我们框架的工作机制;

  • 最后,我们将该框架扩展到3D地图构建(MapTR主要学习2D地图),并在Argoverse2数据集上提供了额外的实验。

形状建模

MapTRv2旨在以统一的方式对高精地图进行建模和学习。HD地图是矢量化静态地图元素的集合,包括人行横道、车道分隔线、道路边界、中心线等。对于结构化建模,MapTRv2在几何上将地图元素抽象为封闭形状(如人行道)和开放形状(如车道分隔线)。通过沿形状边界依次采样,将闭合形状单元离散为多边形,将开放形状单元离散成折线。首先,多边形和多段线都可以表示为有序点如图2所示。

21bed27ec370587b81ac55b1e35e15dd.png

对于多边形和多段线,存在许多等价的排列。如图3(a)所示,对于两条相对车道之间的车道分隔线(折线),很难定义其方向。车道分隔线的两个端点都可以被视为起点,点集可以在两个方向上组织。在图3(b)中,对于人行横道(多边形),点集可以按两个相反的方向(逆时针和顺时针)组织。循环改变点集的排列对多边形的几何形状没有影响。将固定排列强加给点集作为监督是不合理的。强加的固定排列与其他等价排列相矛盾,阻碍了学习过程。

f941ca951362b3e8aa7a607b4bfea687.png

为了弥补这一差距,MapTRv2对每个地图元素进行建模。

具体而言,对于具有非特定方向的polyline元素(见图2(左))有两个方向的等价表示,而对有指定方向的polyline元素,则只有一种表示:

ab74fdd14a1ef3d17671abfb79900169.png

对于多边形元素(见图2(右))则有2N个等价表示。即多边形的每个点都可以作为起点,沿顺时针、逆时针两个方向均可以表示该元素。

67a2a1b4fcd7bded2c84f849b51863f4.png

结构

MapTRv2采用了编码器-解码器的结构,整体网络结构如图4所示。

181089957d8a421acc52511fa6273ec0.png

Map Encoder

地图编码器从传感器数据中提取特征,并将特征转换为统一的BEV特征表示。MapTRv2与各种车载传感器兼容。我们支持各种PV2BEV转换方法,例如CVT、LSS、可变形注意力、GKT和IPM。在MapTRv2中,为了显式地利用深度信息,我们选择基于LSS的BEVPoolv2作为默认转换方法。

Map Decoder

地图解码器由地图查询和几个解码器层组成。每个解码器层利用自注意和交叉注意来更新地图查询。具体设计如下:

分层查询。我们提出了一种分层查询嵌入方案来显式地对每个地图元素进行编码。具体来说,我们定义了一组实例级查询和一组由所有实例共享的点级查询。每个地图元素对应于一组分层查询。第i个地图元素的第j个点的分层查询被公式化为:

e9122cc7f3744958b245ffa15a9910c9.png

自注意力变体。MapTR采用一般的自注意使层次查询相互交换信息(包括实例间和实例内),其计算复杂度为(N和Nv分别为实例查询和点查询的数量)。随着查询数量的增加,计算成本和内存消耗急剧增加。

在MapTRv2中,为了减少计算和内存的预算,我们采用了解耦的自注意力,即沿着inter-ins维度和intra-ins.维度,如图4所示。解耦的自注意力大大降低了内存消耗和计算复杂度(从到),并比普通的自注意力具有更高的性能。

Cross-Attention变体。解码器中的交叉注意力被设计为使地图查询与输入特征交互。我们研究了三种交叉注意:基于BEV、基于PV的和混合的交叉注意。

对于基于BEV的交叉注意力,我们采用可变形注意力使层次查询与BEV特征交互。对于2D地图构建,每个查询都预测参考点的二维归一化BEV坐标。对于3D地图构建,每个查询预测参考点的三维归一化三维坐标。然后,我们对参考点周围的BEV特征进行采样,并更新查询。

地图元素通常具有不规则的形状,并且需要长范围的上下文。每个地图元素对应一组具有灵活和动态分布的参考点。参考点可以适应地图元素的任意形状,并捕获用于地图元素学习的信息上下文。

对于基于PV的交叉注意力,我们将参考点投影到PV图像,然后对投影的参考点周围的特征进行采样。密集的BEV特征已弃用。

混合交叉注意是上述两种交叉注意方式的结合。

预测头。预测头很简单,由一个分类分支和一个点回归分支组成。分类分支预测实例类得分。点回归分支预测点集V的位置。对于每个地图元素,它输出2Nv或3Nv维度向量,该向量表示Nv点的归一化2d或3d坐标。

训练

分层二分匹配

MapTRv2遵循基于查询的目标检测和分割范式的端到端范式,在一次遍历中并行推断出一组固定大小的N个地图元素。N被设置为大于场景中地图元素的典型数量。为了实现结构化地图元素建模和学习,MapTRv2引入了分层二分匹配,如图5所示。即按顺序执行实例级匹配和点级匹配。

8c25f4c5ffa5495a1bdad3940ae03e32.png

Instance-Level Matching如下:

270e5bfbe455f89cfb658d9341abbbc8.png 7db8cea9a4835510e960df7e344e5813.png

Point-Level Matching如下:

978dc1927f4292734a6b31a3a56f3613.png

一对一集合预测损失

MapTRv2是基于最优实例级别和点级别分配进行训练的。基本损失函数由三部分组成,分类损失、点对点损失和边缘方向损失:

dcec5ed636539976eea95dbd1032d3c1.png

其中分类损失是常见的Focal Loss,点对点损失根据曼哈顿距离计算。

边缘方向损失。点对点损失仅监督多段线和多边形的节点,而不考虑边(相邻点之间的连接线)。为了准确地表示地图元素,边缘的方向很重要。因此,我们进一步设计了边缘方向损失,以在更高的边缘水平上监督几何形状。具体来说,我们考虑配对预测边缘和GT边缘的余弦相似性:

a6b1ae155e2b0d85acf7dd926de1edc0.png

辅助一对多集合预测损失

1e94257fca22a3c95be6469d43e8d757.png

为了加快收敛速度,受[79]的启发,我们在训练过程中添加了一个辅助的一对多匹配分支。如图6所示,一对多匹配分支与一对一匹配分支共享相同的点查询和Transformer解码器,但拥有一组额外的实例查询。

辅助密集预测损失

为了进一步利用语义和几何信息,我们引入了三种辅助密集预测损失:

e703ab3928f11227ca9c3fa7c8468704.png

深度预测损失参考BEVDepth。添加了一个额外的BEV分割头辅助训练。进一步为了充分利用密集监督,我们利用地图GT结合相机内外参得到在透视图上前景mask并使用辅助PV分割头训练网络。

实验

我们在nuScenes和Argoverse2上展开实验。

训练详细信息。除非另有规定,否则ResNet50将用作图像骨干网络。优化器是AdamW,权重衰减为0.01。批量大小为32(包含6个视图图像),所有模型都使用8个NVIDIA GeForce RTX 3090 GPU进行训练。

主要结果

与SOTA比较。我们在nuScenes数据集上训练24 epoch和110 epoch的MapTR/MapTRv2。如表1所示,MapTR/MapTRv2在收敛性、准确性和速度方面大大优于所有最先进的方法。令人惊讶的是,基于ResNet-50的MapTRv2实现了68.7mAP,比具有类似速度的对应MapTR高10mAP,比之前表现最好的多模态结果高6mAP,同时速度快2倍。只有相机输入的MapTRv2-VoVNet99实现了73.4mAP,比多模态VectorMapNet高19.7mAP,同时比多模式MapTR快4倍、10.9 mAP,以及3.9 FPS。如图1所示,MapTR/MapTRv2实现了精度和速度之间的最佳折衷。MapTRv2-ResNet18在实时速度下达到50+ mAP。

6f837763caf6746e9408f575d345814b.png

同时,我们还在Argoverse2数据集上评估了我们的框架。Argoverse2提供了3D矢量化地图,与nuScenes数据集相比,该地图具有额外的高度信息。如表2所示,在2D矢量化地图构建方面,MapTRv2实现了67.4mAP,比VectorMapNet高29.5mAP,比HDMapNet高48.6mAP。在3D矢量化地图构建方面,MapTRv2实现了64.7mAP,比VectorMapNet高29.9mAP。在Argoverse2数据集上的实验表明,Map-TRv2在三维矢量化地图构建方面具有优越的泛化能力。

0986d1a30c7256911bd6da7f114f5f27.png

MapTRv2路线图。在表3中,我们展示了如何在MapTR上构建MapTRv2。我们首先将MapTR中默认的PV到BEV的转换方法GKT替换为LSS。然后我们逐渐增加了辅助密集监督、高效记忆的解耦自注意和辅助一对多匹配。在所有这些组件的情况下,MapTRv2-ResNet50达到61.5mAP,这比具有类似速度的MapTR-ResNet50高11.1mAP。如图7所示,MapTRv2实现了比MapTR更好的收敛性(24个epoch,61.5mAP vs 110个epoch,58.7mAP)。我们还提供了MapTRv2的无BEV变体,用基于PV的交叉注意力取代了基于BEV的交叉注意力,并删除了PV到BEV的转换模块。尽管无BEV的MapTRv2的性能有所下降,但该变体摆脱了昂贵的密集BEV表示,并且更加轻量级。

53dd0b4d82bd6dbe604e4579265862f3.png 19ee98e2172291fb190df1d299efa2c4.png

消融实验

在本节中,我们通过广泛的消融实验研究了MapTRv2框架的各个组成部分。并在nuScenes数据集上进行所有实验。为了有效地进行消融实验,使用具有24个epoch训练的MapTRv2-ResNet50作为基线模型。

置换等价建模。在表4中,我们提供了消融实验来验证所提出的置换等效建模的有效性。与传统的对点集进行唯一置换的建模方法相比,置换等价模型解决了映射元素的模糊性,提高了4.1mAP。对于人行横道,改进甚至达到7.1AP,证明了在多边形元素建模方面的优越性。

c62f8e403c77fe81c19702ec3dc573c2.png

自注意力变体。在这项消融研究中,我们摒弃了混合匹配,以充分揭示自注意力变体的有效性。如表5所示,实例自注意在很大程度上减少了训练显存(减少2265M),同时以可忽略的准确性下降(下降0.3mAP)为代价。为了恢复每个实例中的交互,去耦合的自注意力在点上再增加一个自我注意。与普通的自注意力相比,它的内存效率高得多(减少了1985M),并实现了更好的准确性(高出0.5mAP)和类似的速度。为了进一步揭示解耦自注意力优越性,在表6中,我们在内存消耗和实例查询数量方面比较了朴素自注意和解耦自注意。随着实例查询数量的增加,mAP和内存成本不断增加。在相同的内存限制(24 GB的RTX 3090)下,解耦的自注意力需要更少的内存,并导致更高的性能上限。

11e0b939dec5a1c0a45e3430aefadaa4.png 33feca63dcd37c44ffc3f4694ad67fc8.png

交叉注意力变体。在表7中,我们对nuScenes数据集和Argoverse2数据集进行了交叉注意力。nuScenes数据集上没有地图的高度信息,因此PV特征上投影的参考点不够准确。当我们简单地用基于PV的可变形交叉注意力取代基于BEV的可变形交互注意力时,准确度下降了12.0mAP。当我们将基于BEV和基于PV的交叉注意力进行叠加时,其性能仍然不如基于BEV的交叉注意力。但在Argoverse2数据集上,地图的高度信息是可用的,并且可以监督投影的参考点是准确的。因此,基于BEV和基于PV的交叉注意力之间的性能差距比基于无场景的要小得多。混合交叉注意力将基于BEV的精度提高了0.9mAP,证明了PV特征和BEV特征的互补性。

Centerline扩展

中心线可以被视为一种特殊类型的地图元素,它提供方向信息,指示交通流量,并在下游规划者中发挥重要作用。根据LaneGAP中提出的路径建模,我们在MapTRv2中包含了中心线学习。如表17所示,在包括中心线的情况下,MapTRv2在nuScenes数据集上实现了54.0 mAP,在Argoverse2数据集上达到了62.6 mAP(2D地图)/61.4 mAP(3D地图)。将MapTRv2扩展到中心线为端到端规划铺平了道路。

34359d38edd56d58c9ee7f7dccd8363b.png

定性结果

我们分别在图9和图10中显示了Argoverse2和nuScenes数据集的预测矢量化HD图结果。MapTRv2在复杂多样的驾驶场景中保持稳定和令人印象深刻的结果。

3dbd3b604ef27c9523a3c8dccbaaea74.png f4dc30e4d015b86022bbe165a0400605.png

结论

MapTRv2是一个用于高效在线矢量化高清地图构建的结构化端到端框架,它采用简单的编码器-解码器-转换器架构和分层二分匹配来执行基于所提出的置换等价建模的地图元素学习。大量实验表明,该方法可以在nuScenes和Argoverse2数据集中精确感知任意形状的地图元素。我们希望MapTRv2能够作为自动驾驶系统的一个基本模块,促进下游任务(如运动预测和规划)的发展。

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码学习)

ae78b2015fdcbb1bf195c49d38b65e9e.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

ba1661827c8fcc1f65fff09edee1d8b0.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

36a6cfbae58db5d06de0ade9ad3901cb.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

b1bc37ff5fbb8239b66619b794e81cbc.jpeg

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
sota在线升级平台是一种通过互联网连接设备实现软件升级的平台。它可以用于各种设备,如智能手机、电视、家庭电器等,提供了灵活、高效的升级解决方案。 在sota在线升级平台上,用户可以通过简单的操作完成软件升级。首先,用户需要将设备连接到互联网,并访问sota平台的网站或使用其提供的应用程序。然后,平台会自动检测设备的型号和当前的软件版本。如果有新的软件版本可用,用户将收到升级的通知。 升级过程是自动化的,用户只需按照提示进行操作即可。平台会下载、安装和配置新的软件版本,保证设备的稳定性和安全性。升级完成后,用户可以享受到新功能、修复的bug以及性能的提升。 sota在线升级平台的优势在于其快速和简便的升级方式。用户不需要手动下载和安装软件,减少了操作的复杂性和风险。而且,升级是通过互联网完成的,无需额外的物理介质,提高了效率和速度。 另外,sota在线升级平台还具有灵活性和可扩展性。它可以支持各种设备,以及不同厂商的产品。同时,可以根据用户需求和设备特性进行定制化设置,满足不同场景和需求的升级要求。 总之,sota在线升级平台是一种便捷、高效的软件升级解决方案。它能够帮助用户及时获取最新的软件版本,提升设备的功能和性能。在不断发展的科技时代,sota在线升级平台为用户提供了更好的升级体验和服务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值