作者 | TT爱喝豆浆 编辑 | 汽车人
原文链接:https://www.zhihu.com/question/625949014/answer/3261430540
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【多传感器融合】技术交流群
本文只做学术分享,如有侵权,联系删文
不管是摄像头、毫米波雷达还是激光雷达,都只是智能驾驶中负责“感知”的部分,多是需要通过“卡尔曼滤波器”进行融合的。“融合”的目的从根本上说就是提高“感知”的准确率。所以从技术上说,感知元件当然是多多益善,越多判断的当然也就越准。然而,智能驾驶终归是要给用户用的,也不能完全只讲技术,还需要平衡很多作为“商品”的因素。

卡尔曼滤波器示意,说到底就是提高感知的准确程度看谁更值得发展,主要看谁的优势是不可替代的,而改掉他的劣势代价又相对小。个人认为摄像头的潜力可能会大一些。
摄像头
先说摄像头,主要是两个优势:
首先,它可以提供高分辨率的图像,捕捉到道路上的细节,如交通标志、行人、车辆等,使得视觉信息更加丰富。
其次,与激光雷达和毫米波雷达相比,摄像头的制造和安装成本较低,这使得摄像头在自动驾驶技术中更具有竞争力。
总结一下就是:信息大、成本低

视觉可以检测到车道线,这是另外二者不可以获得的而摄像头的劣势也很明显,都是围绕“信息”来的:
一是信息量受环境影响很大,强光、弱光等特殊环境下可能受到影响,导致图像质量下降;
二是距离信息是有限的,摄像头的测距能力相对较弱,难以准确测量物体与车辆的距离;
三是信息识别比较难,有些信息有用,有些信息没用,尤其是复杂的交通场景中,摄像头可能难以准确识别和处理各种情况。
简单说就是:信息获取本来就不太稳定,准确识别还有点难度。
激光雷达
激光雷达的优劣势基本就是正好和摄像头的反过来来的。
优势方面:
激光雷达具有高精度的距离测量能力,可以提供精确的空间信息;
而且不怎么受天气影响,无论在何种环境条件下都能工作,并且适用于对速度和反应时间要求较高的应用场景。
劣势方面:
最显著的就是贵,限制了其在大规模应用中的普及程度,规模效应上不来,成本也就下不来;
还有就是和摄像头一样,有的没的信息太多,数据处理起来比较困难;
另外就是激光雷达的数据是点云,提供不了“速度”信息。

毫米波雷达
毫米波雷达最大的优势就是能提供速度信息,此外也和激光雷达一样,全天候、全天时都能用;另外,毫米波雷达其实很早就在车上用了,技术算是比较成熟吧,价格也没有激光雷达贵。

不过,技术成熟也有两面性,因为上车比较早,那个时候深度学习之类的技术还没那么火,因此目前很多毫米波雷达的数据处理都是在雷达内部实现,依赖算力较低的MCU,无法实现目前深度学习可以达到的感知性能。
误检问题也比较突出,包括各类杂波、多径反射、无法判别高度的目标等。之前爆出的一些事故很多也都和毫米波雷达的误检有关(比如不能识别静止物体)。
技术上三者互补,但视觉不可替代
通过上面的对比可以发现,每个感知元件都有独特的优势,摄像头信息量大,能识别交通信号标识等;激光雷达不受天气影响,能提供高精度的距离,而毫米波雷达能提供速度信息。
这不正好是咱开车最重要的信息么,所以技术上说,这三兄弟和唐僧三徒弟一样是缺一不可。
但落实成商品,我个人感觉还是摄像头的潜力大一些。
而且摄像头本身的感光技术也可以提升,深度学习这些“新”技术,也能让识别精度提高好几个级别。另外,摄像头也不只汽车行业用,摄影摄像就不说了,机器人啊之类的产业也要用,研究的人也就多了,众人拾柴火焰高嘛,技术进步或突破的速度可能也快一些。
另外,视觉能感知到的车道线、交通标识等的能力是不可替代的,视觉相关的算法也更容易被主机厂掌控(毕竟毫米波雷达和激光雷达硬件都是供应商的,另外打包卖算法也是有可能的),所以对主机厂来说,深入研究视觉路线总没什么坏处。
当然了,也不是说毫米波雷达和激光雷达就不需要了(毕竟像特斯拉这么激进的还是少的),只是他们进步的方向主要是提高精度、降低成本,这种物理极限的突破难度高一些吧,供应商的投入可能会大一些吧。
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)

② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!