自动驾驶行业,练习时长两年的产品经理的知识体系构建~

作者 | BUAA火车侠  编辑 | 汽车人

原文链接:https://zhuanlan.zhihu.com/p/606269242

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心BEV感知技术交流群

本文只做学术分享,如有侵权,联系删文

21年中开始,在毕业三年之后,开始围绕自动驾驶构建自己的知识体系,到目前为止不到两年。总的来讲,看的东西不算少,形成深刻记忆的少一些,通过实践内化为自己能力的则更少。能清晰地感觉到,和其他从业者之间知识深度、广度存在差距,写的东西也都是些没太多深度的小白类文章,我也感觉很惭愧。但毕竟前几年落下很多,现在还处于补课的阶段,慢慢来吧。

一些数学性很强的东西都是纸质笔记,一些理论性没那么强的东西我发在了知乎上。

读书时其实对学习知识的兴趣没那么大,后来更是被眼病搞得失去了学习动力。有意思的是,27岁之后又开始对知识产生了浓厚的兴趣。出于种种原因,我在这个行业里的位置仍然不高,仍然是一个比较蹩脚的“产品经理”,这种背景下,兴趣是支撑我前进的最大动力。

用Xmind整理了一下自己这几年的知识树,知乎的图片不够高清,后面也会用文字表达一下。一些还没有学,但想要了解得内容,也会列出来。总体感觉就是知识一直不够用,学习的时间和精力也是不够用。虽然心急,但能咋办?学吧,学无止境,太深了~

7b558bebac7e0c4184c3ec8fbaf0de14.png 08ce2a99253fee6911b2ca2f7f0b5afc.png

1. 学科基础

1.1 数学(没有太多实践,学过后忘得多,但能有基本概念)

  1. 最优化方法:基础概念,梯度下降(最速)、牛顿法、拟牛顿(DFP、BFGS)、高斯牛顿、LM,拉格朗日,KKT等

  2. 概率统计:贝叶斯理论 ->BF、KF、EKF、UKF、PF

  3. 矩阵论基础(研究生学过,忘了很多,重点关注基础概念、QR、SVD等);

  4. 傅里叶变换原理;

  5. Cartisian坐标与Frenet坐标的转换;

1.2 计算机(浅薄,记忆不深刻)

  1. 《计算机组成原理》

  2. 《操作系统》(了解车载OS)

  3. 《计算机网络》(了解车载网络通信相关)

  4. 《编译原理》(一知半解)

  5. 《数据结构与算法》(没力气看,有空再说)

1.3 深度学习与图像处理算法基础

  1. 《统计学习方法》

  2. 《冈萨雷斯:数字图像处理》

  3. 主流深度学习方法、论文(待学习)

1.4 SLAM算法(知识基本局限于《14讲》)

  1. 三维空间的刚体运动:旋转矩阵、四元数、李群李代数;

  2. 前端odometry;

  3. 后端优化方法:BA、KF、EKF等

  4. 回环检测的概念与方法:基本概念;

  5. 主流点云registration算法:ICP、NDT等;

  6. 主流的SLAM算法:ORB、LOAM系列、LIO、VIO、R3Live的基本原理(待了解);

1.3 工程工具(浅尝即可,个人岗位也不大需要,需要有一个基础概念即可)

  1. C++(硕士写过,已经忘)

  2. Python(硕士写过,已忘)

  3. Linux系统

  4. OpenCV

  5. PCL点云处理

  6. Eigen

  7. 深度学习:Pytorch

1.4 智能化汽车的原理

  1. 自动驾驶感知硬件原理(工作中有所实践,记忆更深刻一些);

  2. 自动驾驶执行层的线控底盘技术原理(组车辆时候用到);

1.5 汽车&自动驾驶产业相关

  1. 主要整车厂及其产出车型,车型的自动驾驶的能力;

  2. 主要自动驾驶厂商及其能力

  3. OEM的整车研发流程(限于德系OEM,第一份工作带来的经验);

2. 智能汽车基础软件架构

2.1 汽车OS(仅限于了解概念)

  1. 自动驾驶域:实时操作系统OS:宏内核的RT Linux、微内核的QNX

  2. 座舱域:Linux、Android;

  3. 基础车控:OSEK\VDX、AUTOSAR CP

  4. Hypervisor硬件虚拟化:Blackberry、ACRN

  5. BSP板载支持

2.2 中间件(大部分限于概念,CyberRT有所学习)

  1. DDS通信原理:应用层协议,需要了解CyberRT、ROS2

  2. SOME/IP原理:应用层协议。

  3. 标准化中间件:AUTOSAR AP面向自动驾驶,CP面向基础车控

2.3 自动驾驶框架(待了解)

  1. Apollo

3. 自动驾驶算法原理

3.1 车端感知

  1. BEV原理

  2. Occupancy Network基础原理

3.2 定位

  1. 基于高精地图匹配的定位(淘汰);

  2. 基于GNSS的定位;

  3. 主要的融合定位方法(KF、BA);

3.3 规划

  1. 全局规划:A* 、Dijkstra

  2. 决策规划:基于规则——开辟凸空间,基于强化学习

  3. 路径规划(凸空间优化):搜索、采样、二次规划

  4. EM Planner(Expectation Maximum算法)

3.4 控制

  1. PID-比例积分微分:工科生的老朋友;

  2. LQR:线性二次调节,主流控制算法;

  3. MPC(待了解)

3.5 预测(完全没概念)

4. 自动驾驶仿真系统

调研比较充分,实践局限于围绕HDmap的数据采集和静态场景搭建;

5. 导航电子地图

练习时长一年半,了解相对多一点点。

6. 标准类

  1. 自动驾驶仿真相关标准:

  • 高精地图、静态仿真场景OpenDrive(地图、仿真都有用)

  • 精细化路面建模、仿真OpenCRG

  • 动态仿真场景OpenScenario

  1. 中国道路建设标准GB5768(地图、仿真场景都有用)

  2. 功能安全相关标准:ISO 26262,ASPICE(知之甚少,应该需要量产项目才能有深刻认识)

  3. 政策法规相关标准:主要是国内自动驾驶开发的法规,需要脱敏;

7. 产品设计能力

路子比较野,专业性待提高。产品经理的方法论需要建设。

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署大模型与自动驾驶Nerf语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

c9cd4b07efe96f21275c29956046fa83.png

网页端官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

国内最大最专业,近2700人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

d42ef3eb5316a888891d3f0fa04588e8.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦2D/3D目标检测、语义分割、车道线检测、目标跟踪、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、在线地图、点云处理、端到端自动驾驶、SLAM与高精地图、深度估计、轨迹预测、NeRF、Gaussian Splatting、规划控制、模型部署落地、cuda加速、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

cc8c29a4182dc3df5c9d891b5a006c13.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

d57e6ad5fed5db307811effec778447b.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值