道不尽的决策规划 | 聊聊Uber的自动驾驶决策方案

作者 | 论文推土机  编辑 | 汽车人

原文链接:https://zhuanlan.zhihu.com/p/690790925

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心规划控制技术交流群

本文只做学术分享,如有侵权,联系删文

LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving。文章中提到的是一个multi-future prediction and planning的架构,由于prediction 能够给出多个realization, 因此与之配合的planner也能够同时处理多个场景,这个时候采用contingency planning无疑是一个很好的选择。我们这里就重点看下uber方案中的contingent planner的设计思路。此前他们还发了一篇论文推土机:Uber决策规划方案:Jointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles,介绍他们的方案,也是可以看下的。

上一篇文章我们看到了论文推土机:RACP: Risk-Aware Contingency Planning with Multi-Modal Predictions文中也是提到了采用sampling based方案进行contingency plan,经 @lzumi 提醒,本文中也是同样的思路。文中还有multi-future prediction的部分,我们这里就跳过了,直接看到contingency planning。整体的predicton-planning架构如下:

89fc47214d9dbe74cd821c3c80637027.png

contingency planner在3.4节,这里的分析还是比较细致的。首先对于常规的motion planning,如果说输入也是一个multi-future, 那么通常会采用多个场景同时考虑的期望(expectation)来进行cost evaluation:

6dde5d2f910fcd231cdf3bd2827ab9b6.png

这么多确实考虑了所有场景的可能性,但是只是采用了一个规划轨迹去应对所有case,忽略了最后可能发生的结果只有所有可能场景中的其中之一。这样做的结果往往就是生成一个过于保守的轨迹规划结果。这里特别提到了一点,如果我们把这个expectation变成maximization,那么这个价值评估方式就是去考虑所有场景中的最危险case,最后做出最保守策略了。

如果这个轨迹就这么进行价值评估肯定就太保守了,最后肯定是一脚急刹。但是如果通过contingency plan的方式只在初段考虑这个max评估方式,做到有能力应对后面所有场景,然后在后端则对每个场景单独考虑,这样就能够做到:“we plan a short-term trajectory that is safe with respect to all possible futures and allows a proper contingent plan for each future realization”,因此代价评估方式如下:

982cb1df757c0c4655c79461cb11c353.png

其中

03a4d6d8328452d9dc0fe36f72c72102.png

这里面的action cost部分就是初段shared part,其中采用了max评估方式,也就是上面说的考虑最差情况,这样做是为了能够在初段有能力在未来任何场景发生后都能够从初段的末状态开始进行应对。但是后面cost to go不分则是对每个场景进行单独考虑,并且这里的评估方式是min。对比论文推土机:RACP: Risk-Aware Contingency Planning with Multi-Modal Predictions这个里面的评估方式

b95b5271b695c219538daf36886c0d3c.png

我们可以看到和本文的区别就在于初段的评估方式,本文中的方式强调了初段必须对最危险场景可行。如果这样做没有别的假设说白了还是一个急刹车,所以作者这里强调“Such decision-postponing avoids over-conservative behaviors while staying safe until more information is obtained. ”如果必须考虑最危险场景在初段考虑和全程考虑是没有区别的,因为采用model predictive的思路,每次规划后控制也只是去执行前面的一小段,所以初段一旦考虑最危险场景还是一个急刹车。但是这里表示随着车辆推进,我们是有能力gather more information的,所以对于不可能出现的小概率事件应该是有能力把它干掉的。

所以这里暗含的假设就是如果给你了一个非常危险的场景,那这个场景确实要考虑,如果需要急刹车那就必须要急刹车,举个例子路口右转,左边大车将左侧视野完全遮挡,按道理确实应该在路口先停一下车看看左边有没有人在启动,这时候以较低速度行驶都是危险的。但是如果说随着车子推进,获得左侧视野,确实没有人或车,那这个危险场景的概率就是消失,自然自车就不会有刹车动作了。

至于怎么实现,文章采用的是sampling based的方案:

9353435a13ff0fa0794ba848c29d1e46.png

纵向采用了四次多项式,横向采用了五次多项式,然后初段和后段进行拼接,组成所有组合,这个组合还是很多的,足足组合了240* 260个,常规架构肯定是顶不住了。此外初段和后段的时间分配是1 sec+4 sec:

3983983a6a86404d6224c870920a2300.png

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署大模型与自动驾驶Nerf语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

45e142c5529559fc7066daa4a0593e38.png

网页端官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

国内最大最专业,近2700人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

0ca99d42d70bd015fa7bed3467de2261.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦2D/3D目标检测、语义分割、车道线检测、目标跟踪、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、在线地图、点云处理、端到端自动驾驶、SLAM与高精地图、深度估计、轨迹预测、NeRF、Gaussian Splatting、规划控制、模型部署落地、cuda加速、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

decb3e880c5f25ff1981515c1470422b.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

dd3f53f5b920f91303ff74621082ef70.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值