条条大路通罗马!ICRA'24 VBR:专为视觉里程计和SLAM的新基准

点击下方卡片,关注“3D视觉之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心BEV感知技术交流群

论文作者 | 3D视觉之心

编辑 | 自动驾驶之心

数据集“明星”之殇

早期当特定任务的ground truth数据可获取时,计算机视觉社区设计了适当的度量标准来评估其算法结果的准确性。尽管KITTI数据集的优点无可争议,但随着传感器显着改进和发展,开始逐渐显示出他的岁月痕迹,计算设备和GT系统也是如此。许多数据集的主要缺点也许在于:

  • 位置GT受到限制,纯粹基于RTK-GPS和IMU,并且存在同步问题

  • 主要针对的是自动驾驶,因此数据仅涵盖类似道路的场景。

KITTI数据集的优势在于提供不同的基准(如视觉里程计、光流、立体匹配和物体检测)。然而,其存在IMU读数和图像之间的同步问题,视觉里程计的GT数据仅通过融合RTK GPS接收器和IMU生成,并且用于录制数据的硬件现在已经过时。

5e5280222bc3cb12f3650605840472ea.png
与VBR的真值轨迹对比
51174b752f68da880348e28b2771b8f8.png
KITTI的LiDAR投影图像有许多孔洞

牛津机器人车是另一个值得关注的车辆数据集。与KITTI不同,它以数据序列中最长的特点脱颖而出。然而,牛津机器人车数据集中的GT数据仅依赖于部分GPS和INS数据,这使得用于SLAM和定位方法准确性基准的基线不可靠。此外,像Mulran这样的方法使用相同的GT数据生成过程,导致了相同的问题。

(大拇指往上滑,点击最上方的卡片关注我,整个操作只会花你 1.328 秒,然后带走未来、所有、免费的干货,万一有内容对您有帮助呢~) 也可以加小助手,拉你进讨论群

ece328070f312d3fcd3409957b7234be.jpeg

罗马数据集能提供什么?

ee7f20e33ac5383452e5dac8de0b6efe.png

VBR是一个涵盖各种环境的多样化和异构数据集,适应各种机器人平台,包括四足动物、四旋翼飞行器和自动驾驶车辆,使其成为机器人社区的多功能资源。VBR保持硬件同步以确保数据的准确性和可靠性,并采用基线宽的立体相机来捕获稳健的视觉信息,此外还提供了即使在大规模场景中也能提供准确的6自由度GT值。

数据集链接:www.rvp-group.net/datasets/slam

VBR的传感器包含:3D激光雷达、具有大基线的立体摄像头、RTK-GPS和惯性传感器。覆盖了罗马一些最具特色的区域,包括城市、森林和室内场景,涵盖了40公里左右的轨迹,录制时间近4小时。数据集的原始数据约为2TB。作者提供了两种不同版本的数据集:

  • 带有GT数据的训练版本

  • 不提供GT数据的基准版本

754b507aa7a634d2fd606442c3dfd586.png
VBR的采集设备
407b4b7c050274f1765a966bcee1cb46.png

数据选择

VBR 提供了6个数据集,分为不同的序列。其中,有4个数据集是通过手持设备进行步行采集的,而另外2个是通过汽车采集的。每个序列都是在不同的环境中收集的,具有不同的挑战场景,如动态环境、交通环境、长时间序列和广阔区域。表III总结了一些序列的参数,并提供了一些示例。

f10671c4dfafa94207b59e9758808e64.png

主要内容为:

  • 西班牙广场:这个序列是在西班牙广场及附近街道上采集的。它包括几个大型循环,上下楼梯,因此轨迹是非平面的。狭窄的街道限制了LiDAR的视场范围,但建筑立面是丰富的结构来源。

  • 罗马斗兽场:包括围绕着斗兽场和君士坦丁凯旋门的两个循环。LiDAR的范围并不总是足够捕捉垂直结构。在某些情况下,传感器的最大范围不足以测量整个周围环境,而环境是重复的,使得一些区域对状态估计而言较困难。

  • 平奇奥公园:在维拉·博尔赫塞收集了几个循环。这个数据集以丰富的植被和重复的环境为特点。

  • DIAG:这个序列是一个混合的室内/室外数据集。我们在建筑内外行走,穿过走廊,穿过庭院,上楼梯,到达唯一能接收到RTK-GPS信号的屋顶。

  • 校园:与所有其他序列相比,这个序列是在罗马大学主校区使用配备的汽车采集的,包括几个循环,几乎横跨了所有可由汽车通行的街道。有几个狭窄的通道和一些通过建筑物底下的隧道。动态主要由行走的人组成,占录制数据的低比例。

  • 齐安皮诺:这些序列是在齐安皮诺城市记录的。这是迄今为止最长的序列:总轨迹长度约为21公里,同时受到适度动态的影响。

benchmark

8881a8690cd67182a74c0a1dcfb386b2.png c23d2e5b7b0c936fcee3c6abcd34a44d.png b01547e7cbe7ad5d9c1e29335c56dcab.png

总结

VBR是一个新的视觉和感知数据集,专门针对SLAM和里程计估计方法。其序列涵盖了不同的环境,并以手持和汽车方式获取。与现有数据集相比,VBR的序列提供了多种环境。此外还提出了一种新颖的GT估计方法,将RTK-GPS与LiDAR Bundle Adjustment模式融合。

参考

[1] VBR: A Vision Benchmark in Rome

投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署大模型与自动驾驶Nerf语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

99673dbb920d0ffe9ed12382840bfc42.png 网页端官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

国内最大最专业,近3000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

17beb310ee7103218c8f778b1933a706.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!

自动驾驶感知:目标检测、语义分割、BEV感知、毫米波雷达视觉融合、激光视觉融合、车道线检测、目标跟踪、Occupancy、深度估计、transformer、大模型、在线地图、点云处理、模型部署、CUDA加速等技术交流群;

多传感器标定:相机在线/离线标定、Lidar-Camera标定、Camera-Radar标定、Camera-IMU标定、多传感器时空同步等技术交流群;

多传感器融合:多传感器后融合技术交流群;

规划控制与预测:规划控制、轨迹预测、避障等技术交流群;

定位建图:视觉SLAM、激光SLAM、多传感器融合SLAM等技术交流群;

三维视觉:三维重建、NeRF、3D Gaussian Splatting技术交流群;

自动驾驶仿真:Carla仿真、Autoware仿真等技术交流群;

自动驾驶开发:自动驾驶开发、ROS等技术交流群;

其它方向:自动标注与数据闭环、产品经理、硬件选型、求职面试、自动驾驶测试等技术交流群;

扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

da75688c890f2486db105df48210e73f.jpeg

④【自动驾驶之心】硬件专场

ec0f919755bdde9c5ee723149a603b7b.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值