作者 | ahrs365 编辑 | 哎嗨人生
点击下方卡片,关注“自动驾驶之心”公众号
戳我-> 领取自动驾驶近15个方向学习路线
本文只做学术分享,如有侵权,联系删文
最近两年关于端到端自动驾驶的消息很多,加上不同的定语修饰,有很多单位都发布了国内首个端到端智能驾驶系统:
首发端到端自动驾驶大模型,目标2025年L4:小鹏开启AI智驾 ...
车辆学院科研团队完成国内首套全栈式端到端自动驾驶系统 ...
首个感知决策一体化自动驾驶大模型!上海AI实验室等斩获 ...
特斯拉向用户推送FSD V12,首个端到端AI自动驾驶系统上线...
完成国内首次端到端智驾大模型路测,千挂科技实现「弯道超车」...
元戎启行是国内第一家能够将端到端模型成功上车的人工智能企业...
感觉自动驾驶已经到来,前途一片光明(与之对应的是,各大车企疯狂裁员),属实看不懂。
下边列举了一些机器学习的一些基本概念。
1.端到端学习:
指的是一个模型直接从原始输入数据(例如图像像素)到最终输出结果(例如分类标签)的学习过程,不需要手动设计和提取特征。一个端到端的神经网络模型可以通过训练数据直接学习映射关系
2.机器学习:
机器学习是人工智能的一个子领域,涉及通过数据驱动的方法让计算机系统自动学习和改进性能,而不需要明确的编程指令。包括监督学习、无监督学习和强化学习等
3.强化学习:
强化学习是一种机器学习方法,系统通过试错与环境交互,学习在不同状态下采取最佳行动,以最大化累计奖励。
4.深度学习:
深度学习是机器学习的一个子领域,使用多层神经网络(深度神经网络)来学习数据中的复杂模式和高级特征。
5.卷积神经网络(CNN):
主要用于图像处理和计算机视觉任务,是深度学习中的一个常见模型
6.循环神经网络(RNN):
主要用于序列数据处理,如自然语言处理和时间序列预测。
7.模仿学习:
模仿学习是一种机器学习方法,系统通过观察和模仿专家的行为来学习任务
8.神经网络模型:
神经网络是受生物神经系统启发的计算模型,通过模仿大脑神经元的连接和处理方式来解决复杂的计算问题,神经网络是机器学习的一种方法。
9.长短期记忆网络(Long Short-Term Memory, LSTM):
是一种特殊类型的循环神经网络(RNN),属于深度学习的范畴。LSTM是为了解决传统RNN在处理长序列数据时存在的长期依赖问题而设计的。
10.Transformer:
是一种深度学习模型,主要用于处理序列数据,尤其在自然语言处理(NLP)任务中表现出色。Transformer模型属于深度学习的范畴,是一种基于注意力机制的模型,解决了传统RNN和LSTM在处理长序列数据时的效率和性能问题。
11.深度学习框架
PyTorch:
TensorFlow:是一个广泛使用的深度学习框架,支持构建和训练各种类型的神经网络模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等。
Keras:最初由François Chollet开发,现为TensorFlow的高级API
Caffe:
百度飞桨:
12.Mediapipe:
其本身并不是用于训练深度学习模型的框架,而是一个用于部署和运行预训练模型的框架。它常常结合深度学习模型来实现复杂的计算机视觉任务。Mediapipe的模块中有许多是基于深度学习模型构建的,例如人脸检测模块使用了基于深度学习的模型。
13.端到端自动驾驶:
指的是使用深度学习和其他机器学习技术直接从传感器输入(如摄像头图像、激光雷达数据)到驾驶控制输出(如方向盘角度、加速、制动)的全流程自动化。与传统的分层方法不同,端到端方法不需要显式的模块化步骤(如检测、跟踪、规划等),而是通过一个统一的模型来实现。
14.Transformer与端到端自动驾驶的关系:
Transformer模型在自然语言处理(NLP)领域取得了巨大成功,近年来其自注意力机制也被应用于计算机视觉和自动驾驶等领域。在端到端自动驾驶中,Transformer模型可以通过其强大的特征提取和全局上下文理解能力,处理和融合多模态数据(如摄像头图像、LiDAR点云、雷达数据等),从而实现更高效和准确的驾驶决策
15.嵌入式深度学习(Embedded Deep Learning):
指的是在资源受限的嵌入式系统上运行深度学习模型。嵌入式系统通常具有有限的计算能力、存储空间和电源供应,例如物联网设备、智能手机、边缘设备、无人机和机器人。为了在这些设备上高效运行深度学习模型,需要对模型进行优化和调整。
模型压缩与优化:
-
-
量化(Quantization):将模型权重和激活值从浮点数转换为低精度整数(如8位),减少模型大小和计算需求。
剪枝(Pruning):删除对模型性能影响较小的权重和神经元,减少模型复杂度。
蒸馏(Distillation):用复杂模型(教师模型)训练较小的模型(学生模型),使小模型保留大模型的性能。
低秩分解(Low-rank Decomposition):将模型权重矩阵分解为低秩近似,减少计算量。
-
硬件加速:
-
-
专用加速器:如Google TPU、NVIDIA Jetson、Intel Movidius等专用硬件,加速深度学习计算。
嵌入式GPU和DSP:利用嵌入式设备上的图形处理单元(GPU)和数字信号处理器(DSP)进行加速计算。
-
软件框架与工具:
-
-
TensorFlow Lite:针对移动和嵌入式设备优化的TensorFlow版本,支持模型量化和加速。
PyTorch Mobile:PyTorch的移动版本,支持在Android和iOS设备上运行。
ONNX Runtime:支持跨平台的高效推理引擎,可以将模型导出为ONNX格式并在嵌入式设备上运行。
-
16.L4自动驾驶与端到端自动驾驶的关系:
L4自动驾驶,强调在特定环境和条件下实现完全自主驾驶,可以使用多种技术和架构,包括传统的模块化方法和端到端方法。
端到端自动驾驶,是一种实现自动驾驶的技术方法,可以应用于各种自动驾驶级别,包括L4级别。
17.大模型与自动驾驶:
大模型(Large Models)主要属于深度学习(Deep Learning)领域,它们通过在大规模数据上进行预训练,展示了强大的泛化能力和多任务处理能力。深度学习是机器学习的一个子领域,致力于通过多层神经网络进行特征提取和表示学习。大模型广泛应用于多个领域,包括但不限于自然语言处理、计算机视觉、语音识别、强化学习等。
18.世界模型:
世界模型(World Models)属于深度学习(Deep Learning)和强化学习(Reinforcement Learning)领域的交叉部分。这些模型利用深度学习技术来构建、表示和模拟复杂的环境动态和行为,特别是在强化学习、自动驾驶、机器人控制等应用中。
(最后几个概念我是越写越迷糊)
几年前,做L4自动驾驶的厂家百花齐放,各种demo和ppt,非常受资本青睐。后来,大部分都倒闭了,剩下没倒闭的,都开始倒头做L2辅助驾驶。甚至开始卷起了AEB技术。高精地图,无图,BEV,OCC,时空联合,端到端,大模型,世界模型,各种概念层出不穷,不知道下一个被抛弃的概念是哪个,也不知道下一个出现的概念又是哪个。
投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!
① 全网独家视频课程
BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、大模型与自动驾驶、Nerf、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)
② 国内首个自动驾驶学习社区
国内最大最专业,近3000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】全平台矩阵