作者 | 刘缘 编辑 | 3D视觉之心
原文链接:https://zhuanlan.zhihu.com/p/702500297
点击下方卡片,关注“3D视觉之心”公众号
第一时间获取3D视觉干货
>>点击进入→3D视觉之心技术交流群
自我介绍
大家好,我是刘缘(Yuan Liu - Homepage (liuyuan-pal.github.io))。我将于2025年春季加入香港科技大学跨学科学院(AIS)的集成系统与设计(ISD)系,担任助理教授(assistant professor)。现拟招收三维视觉方向的PhD student/research assistant(RA)/visiting students,其中PhD student为25年秋季入学。

此前,我本硕毕业于武汉大学,其中硕士师从杨必胜教授。硕士毕业后,我有幸在浙大CAD&CG实验室得到过周晓巍老师的指导。我博士毕业于香港大学,师从王文平教授与Taku Komura教授。目前,我将会以博后身份去往南洋理工大学刘子纬教授课题组进行访问研究。我也是一个学术兴趣小组AnySyn3D的组织者之一。
研究方向
目前我的研究主要关注于neural rendering/representations (NeRF, NeuS, 3D GS)、3D generative models、3D LLMs这些技术的基础研究,例如如何从GS里面提取高质量mesh,如何设计在有限的三维数据下得到更有效的3D generative model等等。除此之外,我还关注于如何把上述技术应用于下列三个方向的应用中。
AI for 3D Asset Generation。我们希望能够直接生成高质量的3D asset用于游戏、影视、设计等行业中。虽然最近两年三维生成领域特别“卷”、论文层出不穷,但是目前生成的3D models距离游戏、影视所需的3D assets仍有较大差距。如何找到一个适合于设计师的交互生成,如何得到能满足动画需求的布线模型等等,这些都是待探索的问题。
3D/4D Video Generation and Editing。最近火热的可灵、sora模型给大家展示了强大的视频生成能力。未来的视频生成不应止步于2D pixel space上的diffusion generation。传统的graphics pipeline也能够产生高质量、可控、真实的视频。我们可以进一步融合graphics pipeline中的3D prior,让基于AI的视频生成更可用、更好用。
City-scale 3D Reconstruction and Analysis。目前NeRF/GS这些技术无疑都驱动着下一代地图产品的诞生。而这其中也存在着许多问题:如何更加有效地采集一个城市的数据进行NeRF重建、如何管理大尺度下的NeRF or GS数据、如何对其进行有效智能的分析等等。
在下面这些方向上,我们已经有一些研究积累。而更多的成果正在路上,希望我们能够共同创造~
3D Generation: SyncDreamer, Era3D, DreamMat, Wonder3D, SO-SMPL, Surf-D, Part123
Multiview 3D Reconstruction: NeuS, NeRO, NeuralUDF
Novel-view Synthesis: NeuRay, F2NeRF, ProLiF, GaussianShader
Point Cloud Registration: YOHO, RoReg, SGHR, FreeReg
Object Pose Estimation: PVNet, Gen6D
科研环境
设备:我会购置一些基础算力如4090/A6000供学生做基础性的实验。在需求大算力的项目上面,我们可以依托HKUST的算力集群,大概有500块H800;以及,在能够和企业合作的项目方面,我也会尽力为学生找到合适的实习单位去利用企业的算力、合作共赢。(也欢迎对上述研究方向感兴趣的企业与我联系!)
指导:对于某个project,我们可以是weekly meeting,也可以是有需求随时聊。我会尽力提供从idea到paper写作完整流程的帮助。在一些我不够熟悉的topic上,我会尽力找到适合的同学、朋友、合作者一起提供帮助。在读博期间,我也很幸运地和一些硕士或者低年级博士合作指导过一些论文,详情可见此处。
待遇:博士的工资大概有18k港币/月,特别优秀的还可以申请港府奖学金HKPFS(大概27k港币/月)。HKPFS由香港政府选拔,主要是看本科(or 硕士)的学校排名,GPA排名,国奖数量,论文数量。这两种奖学金都足够大家在香港生活。
招生需求
我希望你能够有对于3D vision上述研究方向的热情,有比较扎实的coding、数学基础。如果你能够在NeRF/NeuS/GS/Diffusion models/Multi-Modality LLM方面有相应的经验,如research project或者publication,那就更好了。
目前招收的PhD student的入学时间为2025 fall,学制为4年。
RA的职位一般是提供给本科或者硕士毕业、希望攒攒成果能够出去读博的同学。当然,如果合作中感觉很聊得来,决定留下读博也不是不行。
Visiting student一般以合作一个project并且发一篇paper为目标。on-site or remote 都可以。这里既可以是,你想来我这里读博,尝试合作一下看看;也可以是,你是一名本科/硕士/博士,并且希望能够合作一些project来攒paper。我手头上目前还有许多有意思的题目。我会对这些题目相关的文献做好前期调研以及设计清楚其中的流程、目标,并且一起推进这个题目的完成。
申请方式
感兴趣的同学可以填一下这里的Google Form(链接),并且发送一封邮件到yuanly@connect.hku.hk。邮件的标题为"学校-姓名-PhD/RA/Visiting Student"。邮件内容可以简要描述你申请的motivation以及附上你的CV。邮件和CV最好用英文。后续合适的话,我们可以会继续走学校的正式申请流程。
【3D视觉之心】技术交流群
3D视觉之心是面向3D视觉感知方向相关的交流社区,由业内顶尖的3D视觉团队创办!聚焦三维重建、Nerf、点云处理、视觉SLAM、激光SLAM、多传感器标定、多传感器融合、深度估计、摄影几何、求职交流等方向。扫码添加小助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
扫码添加小助理进群
【3D视觉之心】知识星球
3D视觉之心知识星球主打3D感知全技术栈学习,星球内部形成了视觉/激光/多传感器融合SLAM、传感器标定、点云处理与重建、视觉三维重建、NeRF与Gaussian Splatting、结构光、工业视觉、高精地图等近15个全栈学习路线,每天分享干货、代码与论文,星球内嘉宾日常答疑解惑,交流工作与职场问题。