作者 | 深蓝AI 编辑 | 深蓝学院
点击下方卡片,关注“自动驾驶之心”公众号
戳我-> 领取自动驾驶近15个方向学习路线
本文只做学术分享,如有侵权,联系删文
中国可以说是近年来机器人发展最为强劲的国家,而移动机器人技术,作为人工智能与自动控制的交叉领域,其研究广度与深度的空间不可估量。也正因为机器人跟多个领域都能“沾亲带故”、有所连接及广袤的市场前景,因此机器人行业相关企业目前备受资本市场的青睐。
1
—
资本市场狂欢下的机器人产业
以前段时间刚发布了,号称“地表最先进”人形机器人 Figure 02 的初创公司 Figure AI 为例,其背后的资方几乎占据了硅谷的半壁江山。
Figure AI 的背后就除了有大名鼎鼎的Open AI,还有微软、亚马逊、英特尔资本、LG和三星等诸多知名科技巨佬。
国内的云深处(四足机器人公司)前几天宣布完成B+轮融资,作为全球四足机器人五大厂商之一,本次投资方包括华建函数投资、涵崧资管、深智城产投、莫干山高新投资等机构。
光说这几家的名字可能有部分人觉得不熟悉,但他们背后几乎都有国资机构的身影。而且在云深处的这几轮融资中,国资机构可谓是出现得越来越频繁了。
足以可见无论是国内外,资本市场对于机器人产业腾飞的看好,以及政策、股市释放出的诸多利好信号。
2
—
移动机器人技术的发展
路径规划是机器人技术中的关键过程,同时在自动驾驶和物流配送等领域发挥着重要作用。
因此,本次我们重点聊聊移动机器人的运动规划问题。
1、基础问题:训练效率与组合优化
在路径规划中,训练效率和复合优化是两大挑战。
训练效率:在机器学习特别是强化学习应用于移动机器人路径规划时,训练效率是核心挑战之一。算法需要在有限的时间内学习复杂的环境交互,以达到高效导航。研究者通过设计更高效的探索策略、利用迁移学习和多任务学习等方法,来加速模型的收敛,减少训练时间和资源消耗。
组合优化:移动机器人路径规划中的组合优化问题,如寻找最短路径、避开障碍物的同时考虑多目标约束,是一个NP-hard问题。采用启发式算法(如遗传算法、模拟退火、A*搜索等)和混合整数规划方法,可以在保证一定解质量的同时,提高求解速度,实现路径的优化。
关于这一问题,西北工业大学引入了高效渐进策略增强(EPPE)框架,该框架结合了稀疏奖励的优势,旨在为智能体实现全局最优策略,同时提供过程奖励以实时反馈智能体的策略调整。此外,还提出了增量奖励调整(IRA)模型,以逐步增加复合优化部分的奖励权重。支持IRA模型的微调策略优化(FPO)模型在整个过程中逐步调整学习率。
对于他们这项工作有兴趣的朋友,可以在8月13日晚和西北工业大学航空宇航科学与技术专业的赵望同学进行进一步深入探讨(其论文在控制会议上发表并获得杰出论文)。
2、集群规划问题
在移动机器人运动规划中,还有一个经久不衰的问题,那就是集群规划。
在集群规划中,多个移动机器人需要协同工作,完成复杂任务,如搜索与救援、货物运输等。这要求机器人之间有高效的通信机制和协调策略,以避免碰撞、优化整体路径和任务分配。研究重点包括分布式规划算法、多机器人协同策略以及动态环境下的自适应调整。
在传统轨迹优化中考虑避碰可以实现集群的流畅飞行。
然而,在高通信延迟和快速机动时,其难以实现较高的机间避碰频率。集中式轨迹规划可以释放大量算力用于集群感知、定位和决策,而高频率分布式避碰控制则更适用于通信延迟和快速机动的场景。
因此,关于这一问题也值得技术研究人员,深入探讨。
3、端到端路径规划
近年来,端到端(End-to-End)学习在移动机器人路径规划中的应用是一大热点。这种方法直接从传感器输入到行为输出进行学习,无需显式建模环境或规划中间步骤。
其中“端到端控制”是指模型输入传感器数据输出车辆的控制信号。
“端到端路径规划”是指模型输入传感器数据输出规划(预测)的路径点,然后用控制算法将这些点转化成车辆的控制信号。与常规的路径点生成方式不同。
8月份在慕尼黑工业大学主讲自动驾驶相关课程,指导二十多名硕士研究生完成论文研究的周立国老师将就“端到端路径规划”中路径点的链式生成,可以在许多场景下获得较好的规划效果,进行具体分享。
3
—
深入移动机器人运动规划
得益于巨大的潜力市场、广阔的应用领域、政策的大力支持,使得【机器人赛道】这个万亿市场强势开启,其迅猛程度不亚于N年爆火的智能驾驶行业。
因此,本月深蓝学院特意筹办了【移动机器人运动规划】主题月,除了建立交流群供大家探讨之外,还邀请了三位研究不同细化方向的研究人员开设了3场直播交流分享,以期促进国内对于这一主题的研究与了解。
本次内容涵盖:从基础问题的研究(训练效率和组合优化),到经久不衰的集群规划问题,最后落到当下大热的端到端路径规划研究上。
投稿作者为『自动驾驶之心知识星球』特邀嘉宾,欢迎加入交流!重磅,自动驾驶之心科研论文辅导来啦,申博、CCF系列、SCI、EI、毕业论文、比赛辅导等多个方向,欢迎联系我们!
① 全网独家视频课程
BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、大模型与自动驾驶、Nerf、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)
② 国内首个自动驾驶学习社区
国内最大最专业,近3000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型、端到端等,更有行业动态和岗位发布!欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦感知、定位、融合、规控、标定、端到端、仿真、产品经理、自动驾驶开发、自动标注与数据闭环多个方向,目前近60+技术交流群,欢迎加入!扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】全平台矩阵