Mobileye Driving AI 2024 | E2E自动驾驶的关键技术分享

作者 | Zhai 编辑 | 自动驾驶之心

原文链接:https://zhuanlan.zhihu.com/p/1001102187

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心端到端自动驾驶技术交流群

本文只做学术分享,如有侵权,联系删文

Mobileye CEO and CTO reveal stealth developments inAI for achieving full autonomy 2024 Mobileye Driving AI Day,ME的AI DAY,油管链接

Part2是CTO Shai 的分享

e1a7556e702141bf801f47b27457158c.png

主要关注在感知(sense)和规划(plan)部分。

bd3decb41a6325adf0078cc984521988.png

高效的AI系统是ME重点研发迭代的方向。

主要分为四个部分:

  • 感知和规划中transformer 100倍加速

  • 推理芯片EyeQ6H的高效设计

  • 高效自动标注系统

  • 高效模型蒸馏框架

64537153c62b7bd09a789219638819fd.png

6个AI技术革命:

ME成立1999年,最早使用机器学习应用在产品公司之一。

2012 深度学习技术兴起,ME也是最早使用该技术栈的公司之一。(题外话,据说最新的EyeQ6产品中仍然还有一些重点模块是传统机器学习方案,没有采用深度学。还是依赖强大的早期技术积累,作为产品能work好就行,不讲究技术方案)

2018 以来,生成式AI,通用学习,sim2real,逻辑推理技术发生革命,都是基于Transformer。

ME关注这些技术如何影响自动驾驶

6a01a03574db55f1709f0df1a3f2e08e.png

Transformer时代之前的障碍物检测pipeline:

检测2D框,抑制重叠框,通过2D恢复3D(手段有很多,可以去搜索下,感兴趣的话),给到下游PNC

c87b3d83536b610ea580710084353047.png

讲到GPT,后面大量内容都在这个部分:

7c8cd57b66bd928f03980083172b1109.png

GPT可以Tokenize 一切

输入:把多模态数据变成一序列tokens

输出:输出也是tokens序列,生成式,自回归模型

支持复杂的输入和输出结构,数据集,序列,树

障碍物检测ppl实例:

输入:单帧图片

将图片patches序列编码,

输出:图像坐标中多个障碍物坐标序列

0fefac4db14978db5a221be7598f1ffb.png

之前方案:输入是固定规模下的输出

现在方案:学习任意序列长度的概率

关键特性:

链式法则,建模序列依赖性

生成式:使用最大似然拟合数据

工具:自监督,处理不确定性

731297ea7bd7b64c3ec426a8ee493602.png

解释链式法则:

4个车,16个坐标,32个位置,每个位置10个可能性(图像分为100patches,这里就是一个分类,不是准确坐标回归)

所以

不使用链式法则同时预测4个目标坐标维度需要 Dim = 10^32

使用链式法则,每个目标相互独立,只预测10个行*10个列可能性?

(感觉就是一个粗略比喻,不太严谨)

b4d790a9e954f051563ddbce9b8b5abd.png 460f521fa83352e3969919002877d30e.png

self attention:互相倾听

self reflecton:自我思考

376b015faaf88ba8153ab11db2afb1ef.png fa8d8cfeac69151c263924cdddd4e611.png 38fcaa9934d0e46ea3b1c58a794bc9a4.png ee26feb47aa53545486b187d7b5b5e5d.png 6c95f1c26c4bf77bfa4ccf59a5c74cd1.png

transformer非常高效:

相对FCN,更加sparse,

相对cnn,支持多模态

相对LSTM/RNN,更稠密,但是只选择过去几个token

2196bd10b7db66979c7c2d7ddee5761e.png

可处理所有类别输入

可处理不确定性,gpt可以输出很多合理答案,正确答案不唯一

可以输出所有类别输出,比如chatgpt可以描述很多场景

transformer终极学习机器

451ddbb64d53ce6fc8979354434f50a8.png ec4a16be72d404c05b963fcc3451911b.png 7194721b81caa83102a120352542dd7e.png 1676f3a5c1e15b481a0a791cf9a33c50.png 5721815d349467530c83c9484e30dbd2.png

常规transformer不够高效,ME的方案可以无损情况下加速100倍

其中也提到ME也有尝试直接输出控制信号的端到端方案

941886cb321eee42f62202dbe62c65e5.png

回归主题,如何加速transformer100倍

808b973e864869d8dce1410c0d2101bd.png

提出STAT,在TOKEN类别,维度,连接性,增加link token

389365cd56cab49574538de623dba020.png

应该就是每个图像patch,降低分辨率,300用32个link token表示,cross attention在32个link token之间。

听下来是做了近似,应该有精度损失,talk说不带有精度损失?

81d7e57df6f31a751c4cc11dd9009f2b.png

实际应用中并行结果输出,检测结果之间没有前后顺序关系,PAR不是ME的独创,由于IO的限制,串行对芯片推理不利

Detr不是很好的处理不确定性问题

572a66606569434ed16f1d8b39611306.png

每个query有自己的输出结果,query之间是独立的,并行的

60e409d1098e8ff3f7a7d385c4de367f.png c116f2bd6641689db6303706e5276771.png 17674f5e7260d6545e613036b93c6d52.png

灵活和高效需要折中

e75711cc63c34ca6f5d8b55bd0aca612.png

EyeQ6有5种不同结构,分别处理不同算法

fb73eea6d5a7e96b51fa8dfc28899ad8.png dfe3ba9e2365fc719fe01f3ce460ef23.png

6比5功耗增加7w,效率增加十倍,magic就是XNN模块

f220b1f6e625cd7384cca80e9dc966d8.png 66b6efe35fb31448d1eabe0cef02d20d.png 0e82477e8678936f692fe68a24383827.png 01d82b680eec55ea419ce511ab265422.png d7861a976398182d782e1e06a33c1f5c.png 1292a81d0f4d8cc5d3868204559c313d.jpeg d2cb61ee598f3dd47b9a01d63126182c.png 3cd4efd760359d6304faa9fce905331b.png 07017a874538c6c535ecd13c2a9428a0.png 26d36e2aabac1197e5a3f3c349d528c5.png 09abd3add0a0e1c865e72037390c725c.png

总结:

  1. 展示了ME的方法论,尤其是在技术开发,芯片设计,产品定义上有不少谈及

  2. 建模方案,理论分享,能有实际上车视频结果就更好了

  3. 相对国内AI Day的“全国都能开”,“年底200城”,“无图端到端”,“VLM慢系统”等,这个talk显得非常内敛,更偏向科普性质

  4. 期待ME能够推出更多优秀产品,特别是城区NOA

① 2025中国国际新能源技术展会

自动驾驶之心联合主办中国国际新能源汽车技术、零部件及服务展会。展会将于2025年2月21日至24日在北京新国展二期举行,展览面积达到2万平方米,预计吸引来自世界各地的400多家参展商和2万名专业观众。作为新能源汽车领域的专业展,它将全面展示新能源汽车行业的最新成果和发展趋势,同期围绕个各关键板块举办论坛,欢迎报名参加。

5fbd883ec37cee846a7f650f5f66ad47.jpeg

② 国内首个自动驾驶学习社区

『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知端到端自动驾驶世界模型仿真闭环2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型,更有行业动态和岗位发布!欢迎扫描加入

639798d1711e5f92dcf3fe90999679ec.png

 ③全网独家视频课程

端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、CUDA与TensorRT模型部署大模型与自动驾驶NeRF语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

654fde39858ed5588fbedc1dabcac0ce.png

网页端官网:www.zdjszx.com

④【自动驾驶之心】全平台矩阵

6f45da0f28a8b4e2aa5fe360a32dc556.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值