作者 | 自动驾驶专栏 编辑 | 自动驾驶专栏
点击下方卡片,关注“自动驾驶之心”公众号
>>点击进入→自动驾驶之心『轨迹预测』技术交流群
本文只做学术分享,如有侵权,联系删文
论文链接:https://arxiv.org/pdf/2502.08664
摘要

本文介绍了自动驾驶汽车的运动预测:综述。近年来,自动驾驶领域吸引了越来越多的关注。准确预测各种交通参与者的未来行为对于自动驾驶汽车(AVs)的决策是至关重要的。本文主要研究基于场景和基于感知的自动驾驶汽车运动预测。本文提出了运动预测的形式化问题表述,并且总结了该研究领域面临的主要挑战。本文还详细介绍了与该领域相关的代表性数据集和评估指标。此外,本文将最近的研究分为两个主要类别:监督学习和自监督学习,它们反映了基于场景和基于感知的运动预测中不断发展的范式。在监督学习的背景下,本文深入检验并且分析了该方法的每个关键元素。对于自监督学习,本文总结了常用的技术。最后,本文总结并且讨论了潜在的研究方向,旨在推进AV技术这一重要领域的发展。
主要贡献

本文的贡献总结如下:
1)本文全面概述了自动驾驶汽车运动预测的最新研究,涵盖了基于场景和基于感知方法的通用流程;
2)本文总结并且讨论了未来的研究方向,为推进AV技术的发展做出了贡献。
论文图片和表格

总结

本文全面概述了自动驾驶汽车运动预测的最新进展。本文首先介绍了运动预测的表述,然后回顾了各种广泛使用的数据集。接着,详细解释了专门为运动预测设计的评估指标。最先进的预测模型已经取得了重大进展,它们采用了注意力机制、GNNs、transformers和自监督架构等先进技术。尽管这些技术取得了突破,但是该领域仍然面临着重大挑战。理解运动预测对于自动驾驶至关重要,因为它极大地提高了道路场景的可解释性,从而在提高未来自动驾驶技术的安全标准方面发挥着重要作用。
① 自动驾驶论文辅导来啦
② 国内首个自动驾驶学习社区
『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(端到端自动驾驶、世界模型、仿真闭环、2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎扫描加入

③全网独家视频课程
端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)
④【自动驾驶之心】全平台矩阵