我们赞助了CVPR自动驾驶挑战赛!

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

CVPR 2025 DriveX研讨会聚焦于基础模型与V2X(车联网)协同系统的融合,旨在提升自动驾驶车辆在感知、规划与决策方面的能力。传统的单车智能系统在3D目标检测等任务上已取得显著进展,但全域场景理解与3D占用预测等新兴挑战仍需更全面的解决方案。

协作式驾驶系统通过V2X通信和道路基础设施的支持,扩展了车辆的感知范围,提供了危险预警,并通过数据共享提升了决策能力。与此同时,像视觉-语言模型(VLMs)这样的基础模型具备强大的泛化能力,能够实现零样本学习、开放词汇识别以及对新场景的语义解释。以DriveLLM为代表的端到端系统与基础模型的最新进展,也为自动驾驶系统带来了新的突破。

本次研讨会旨在汇聚行业专家,共同探讨这些前沿技术,应对关键挑战,推动智能驾驶发展,提升道路安全水平。

自动驾驶之心对本次workshop挑战赛进行了赞助!为自动驾驶届优秀人才提供更多激励与支持!

研讨主题(Topics)

  • 协作式自动驾驶与智能交通系统中的基础模型

  • 用于交通场景理解的视觉-语言模型(VLMs)

  • 大语言模型(LLM)辅助的协同系统

  • 面向自动驾驶的通信高效的协同感知技术

  • 高效智能的车联网(V2X)通信技术

  • 自动驾驶中的数据集构建与标注方法

  • 基础模型与协同感知的数据集与评测基准

  • 弱势道路使用者(VRUs)的3D目标检测与语义分割

  • 3D占用预测与场景理解

  • 端到端感知与实时决策系统

  • 车路协同(V2I)交互技术

  • 自动驾驶中的安全性与标准化问题

日程

📅 时间地点 :2024年6月12日|美国纳什维尔

主要发言人

论文投稿信息(Paper Track)

目前已全部完结!

接受以下两类投稿:

  • 完整论文 :8页(不含参考文献),将收录于会议论文集

  • 扩展摘要 :4页(不含参考文献)

⚠️ 投稿须使用CVPR 2025官方LaTeX或Typst模板(完整论文为必选项,扩展摘要建议使用相同模板)。

🔗 投稿平台 :OpenReview
https://openreview.net/group?id=thecvf.com/CVPR/2025/Workshop/DriveX#tab-your-consoles

⏰ 重要时间节点 :
  • 投稿系统开放时间:2025年2月26日

  • 论文摘要提交截止时间:2025年3月25日(美国太平洋时间 23:59)/3月26日(格林尼治时间 23:59)

  • 论文提交截止时间:同上

  • 通知作者结果时间:2025年3月31日

  • 最终录用版本提交截止时间:2025年4月7日(格林尼治时间 23:59)

论文奖项

为优秀投稿论文设立以下奖项:

  • 最佳论文奖 :奖金 500 美元 💰 + 荣誉证书 📜

  • 最佳学生论文奖 :奖金 300 美元 💰 + 荣誉证书 📜

  • 最佳应用论文奖 :奖金 200 美元 💰 + 荣誉证书 📜

欢迎广大研究者踊跃投稿,争夺荣誉与奖励!

🏆 挑战赛介绍(Challenge)

我们将在本次研讨会中举办为期10周的挑战赛 ,基于 TUMTraf V2X 协同感知数据集 (CVPR’24),https://tum-traffic-dataset.github.io/tumtraf-v2x/

该数据集包含高质量、真实场景下的V2X协同感知数据,专注于自动驾驶中的协作式3D目标检测与跟踪任务 。

🔗 数据集地址:https://innovation-mobility.com/en/project-providentia/a9-dataset/#anchor_release_4

🛠 我们还提供了完整的开发工具包(Dev Kit),https://github.com/tum-traffic-dataset/tum-traffic-dataset-dev-kit

方便您加载、预处理、可视化和评估模型性能。

📦 TUMTraf V2X 数据集亮点:

  • 来自车载与路侧传感器的9种传感器同步采集数据

  • 包含2,000个标注点云 和5,000张标注图像

  • 共计30,000个带追踪ID的3D边界框

  • 覆盖多种复杂交通场景 :如近碰撞事件、交通违规、超车与U型转弯

  • 提供高精地图 (HD Maps)

  • 使用国际标准格式 OpenLABEL 进行标注

  • 配套开发工具支持数据加载、预处理、可视化、标签转换与方法评估


🗓️ 比赛时间安排:

📊 评估指标说明:

  • Precision(精确率) :正确检测对象占总检测数的比例,衡量正样本预测准确性

  • Recall(召回率) :正确检测对象占实际所有对象的比例,衡量模型找出所有相关目标的能力

  • 3D IoU(三维交并比) :预测框与真实框体积的交并比,衡量空间重合度

  • Position RMSE(位置均方根误差) :预测位置与真实位置之间的均方根误差,评估定位精度

  • Rotation RMSE(旋转角度误差) :预测角度与真实角度的均方根误差,衡量方向估计误差

  • 3D mAP(平均精度) :在不同IoU阈值下3D检测的平均精度,综合反映检测性能


📤 提交流程说明:

使用 CoopDet3D 模型生成的检测结果需以 OpenLABEL 格式(.json 文件) 输出(参考示例)。若自行训练模型,请确保输出符合 OpenLABEL Schema 。对测试集的100帧生成检测文件后,请使用指定脚本将其合并为一个 submission.json 文件。

✅ 在提交至EvalAI排行榜前,请先在本地运行我们的评估脚本进行验证。

📌 最终将 submission.json 文件上传至 EvalAI 排行榜平台。排名靠前的团队将受邀在研讨会上展示方案,并获得荣誉与奖金奖励!


🏅 挑战赛奖项设置:

  • 冠军(第一名)🏆 :金牌 + 奖金500美元 💰

  • 亚军(第二名)🥈 :银牌 + 奖金300美元 💰

  • 季军(第三名)🥉 :铜牌 + 奖金200美元 💰


欢迎全球研究者踊跃参与,共同推动自动驾驶与V2X协同感知技术的发展!

组织者

受邀专家委员会

赞助方

Qualcomm 、Virtual Vehicle Research GmbH、Abaka AI、自动驾驶之心。其中自动驾驶之心是唯一一家国内机构/平台。

更多详情请前往:https://drivex-workshop.github.io/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值