稳操方向盘!MomAD:动量感知规划的端到端自动驾驶新SOTA(CVPR‘25)

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

今天自动驾驶之心为大家分享北京交通大学&地平线最新的工作!稳操方向盘:端到端自动驾驶中的动量感知规划!如果您有相关工作需要分享,请在文末联系我们!

自动驾驶课程学习与技术交流群事宜,也欢迎添加小助理微信AIDriver004做进一步咨询

>>点击进入→自动驾驶之心『端到端自动驾驶』技术交流群

论文作者 | Ziying Song等

编辑 | 自动驾驶之心

我们提出了一种名为Momentum-Aware Driving (MomAD)的框架,用于端到端自动驾驶系统中的轨迹规划。该框架通过引入轨迹动量和感知动量来稳定和优化轨迹预测,从而提高自动驾驶系统在动态环境中的鲁棒性和可靠性。

CVPR 2025|MomAD:动量感知规划的端到端自动驾驶

端到端自动驾驶框架实现了感知与规划的无缝集成,但通常依赖于一次性轨迹预测,这可能导致控制不稳定,并且对单帧感知中的遮挡问题较为敏感。为解决这一问题,我们提出了动量感知驾驶框架(MomAD),该框架引入了轨迹动量和感知动量,以稳定和优化轨迹预测。MomAD包含两个核心组件:(1)拓扑轨迹匹配(TTM),采用豪斯多夫距离选择与先前路径一致的最优规划查询,以确保连贯性;(2)动量规划交互器(MPI),通过交叉注意力机制将选定的规划查询与历史查询相结合,扩展静态和动态感知文件。这种丰富的查询反过来有助于重新生成长时间跨度的轨迹,并降低碰撞风险。为了减轻动态环境和检测误差带来的噪声,我们在训练过程中引入了鲁棒的实例去噪,使规划模型能够专注于关键信号并提高其鲁棒性。我们还提出了一种新的轨迹预测一致性(TPC)指标,用于定量评估规划的稳定性。在nuScenes数据集上的实验表明,MomAD在长期一致性(>3s)方面优于现有的最先进方法。此外,在精心设计的Turning-nuScenes数据集上的评估显示,MomAD在6秒预测时间范围内将碰撞率降低了26%,并将TPC提高了0.97米(33.45%),而在Bench2Drive上的闭环测试中,成功率提高了16.3%。

论文代码:https://github.com/adept-thu/MomAD
论文链接:https://arxiv.org/abs/2503.03125

1. 研究背景:

  • 问题:端到端自动驾驶系统需要无缝集成感知和规划模块,但传统的单次轨迹预测方法可能导致控制不稳定和对单帧感知遮挡的敏感性。

  • 难点:现有方法在处理复杂场景时,往往依赖于一次性轨迹预测,缺乏时序一致性和对动态环境的适应性,容易导致轨迹预测的不稳定和碰撞风险增加。

  • 相关工作:现有的端到端自动驾驶方法如UniAD和VAD在轨迹规划中采用了确定性方法,未能充分考虑轨迹多样性和时序一致性。SparseDrive等方法虽然实现了多模态轨迹规划,但在时序一致性方面仍存在。

自动驾驶技术经历了从模块化、手工设计的管道到更集成化的端到端范式的转变。传统方法将检测、跟踪、地图构建、运动预测和规划等任务分开处理,而端到端框架则强调这些任务的无缝集成。通过优先考虑规划,端到端框架能够战略性地引导来自上游感知模块的信息,从而增强动态驾驶环境中的鲁棒性和可靠性。高质量的规划依赖于准确预测自车未来的轨迹,这需要对静态和动态环境因素(如地图元素和与周围交通参与者的交互)有长远的理解。然而,由于其他道路使用者意图的不确定性、道路条件的变化以及人类驾驶行为引入的模糊性,轨迹预测本质上是随机的,这使得确定性预测变得次优甚至具有风险。现有的多模态轨迹规划方法虽然能够考虑多种可能的交通参与者行为,但它们通常是基于当前感知帧的一次性预测,容易受到遮挡或关键视觉线索丢失的影响,导致轨迹质量下降。此外,缺乏时间一致性可能导致连续轨迹缺乏连贯性,引发不稳定的车辆控制。为了解决这些问题,本文提出了动量感知驾驶框架(MomAD),通过引入轨迹动量和感知动量来稳定和优化轨迹预测,从而在动态驾驶环境中实现更平滑和一致的规划结果。

(a) 确定性规划的方案,例如UniAD,VAD等等方法,缺乏动作多样性,存在安全风险;(b) 多模态轨迹规划方案,例如VADv2,SparseDrive等等方法,通过选择最高分轨迹,但存在最大分数偏移问题导致稳定性不足;(c) 我们提出的MomAD巧妙利用“惯性”的思想,通过动量规划利用历史和感知动量提升时序一致性,解决端到端自动驾驶中不稳定行驶的问题。

2. 研究方法:

  • Topological Trajectory Matching (TTM):该模块通过Hausdorff距离选择与历史路径最匹配的多模态轨迹提案,以确保时序一致性和轨迹的连续性。具体来说,TTM模块通过最小化不同时间步之间的规划差异,防止轨迹偏离历史轨迹。

  • Momentum Planning Interactor (MPI):该模块通过长时查询混合器将当前最佳规划查询与历史规划查询进行交叉注意力处理,扩展静态和动态感知文件,从而丰富当前查询的上下文信息。MPI模块通过结合历史查询和当前查询,生成改进的轨迹预测,增强了对周围环境的感知能力。

  • Robust Instance Denoising via Perturbation:在训练过程中引入受控噪声扰动,使模型能够区分关键和无关特征,提高对感知噪声的鲁棒性。通过这种方式,模型在测试时能够更好地应对实例特征的波动,生成更稳定和平滑的轨迹。

3. 结果与分析:

如表所示,MomAD在L2误差、碰撞率和TPC(轨迹预测一致性)上分别达到了0.60米、0.09%和0.54米。与UniAD、VAD和SparseDrive等最先进方法相比,我们的方法在规划结果上表现出色。值得注意的是,我们在TPC指标上取得了显著改进,在nuScenes数据集上1秒、2秒和3秒的TPC分别提升了0.30米、0.53米和0.78米,直接证明了我们在时间一致性方面的有效性。总体而言,MomAD有效利用了动量的平滑优势,在提升时间一致性方面效果显著。

准确的长轨迹预测对于提升自动驾驶的稳定性至关重要,同时也有助于评估模型解决多模态轨迹规划中时间一致性问题的能力。如表所示,我们在nuScenes和Turning-nuScenes数据集上对比了SparseDrive和MomAD在4-6秒长轨迹预测中的表现,结果显示MomAD在性能上有显著提升。具体而言,在nuScenes数据集中,与SparseDrive相比,MomAD在4秒、5秒和6秒的L2误差分别降低了0.09米(5.14%)、0.34米(14.66%)和0.50米(16.95%),碰撞率分别降低了0.04%、0.11%和0.20%,TPC(轨迹预测一致性)分别降低了0.14米(10.53%)、0.21米(12.65%)和0.38米(19.10%)。此外,在Turning-nuScenes数据集中,与SparseDrive相比,MomAD在4秒、5秒和6秒的L2误差分别降低了0.27米(13.04%)、0.64米(23.62%)和0.85米(25.30%),碰撞率分别降低了0.06%、0.14%和0.26%,TPC分别降低了0.17米(11.04%)、0.73米(31.60%)和0.97米(32.45%)。可以观察到,MomAD在更远距离的轨迹预测上表现显著提升,尤其是在6秒时的改进幅度最大。总体而言,MomAD提升了长轨迹预测的性能,进一步证明了其能够有效缓解时间一致性问题。

我们已在Bench2Drive数据集上进行了具有挑战性的闭环评估,结果如表所示。该数据集涵盖44个交互场景,例如切入、超车、绕行,以及220条路线,覆盖多种天气条件和地点。我们的MomAD框架在成功率上分别比VAD多模态变体和SparseDrive提高了16.3%和8.4%,并在舒适度评分(轨迹平滑度)上分别提升了7.2%和5.3%,证明了其有效性。

4. 总体结论:

MomAD框架通过引入轨迹动量和感知动量,显著提高了端到端自动驾驶系统在轨迹规划中的稳定性和鲁棒性。未来工作将探索扩散模型和推测解码方法,以进一步提高轨迹多样性和效率。

自动驾驶之心

论文辅导来啦

知识星球交流社区

近4000人的交流社区,近300+自动驾驶公司与科研结构加入!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知(大模型、端到端自动驾驶、世界模型、仿真闭环、3D检测、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、大模型,更有行业动态和岗位发布!欢迎加入。

独家专业课程


端到端自动驾驶大模型、VLA、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、车道线检测、轨迹预测、在线高精地图、世界模型、点云3D目标检测、目标跟踪、Occupancy、CUDA与TensorRT模型部署、大模型与自动驾驶、NeRF、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频

学习官网:www.zdjszx.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值