目录
前言
本文以马尔可夫链在人工智能中的应用为例,从概念介绍、马尔克夫链的常用模型、马尔可夫链的具体应用这三个方面阐述,并通过简述马尔科夫链的发展历史,展现了在人工智能领域中数学思维的重要性。注意,由于作者的学识问题,很多方面可能无法进行深层次的探究,只能从浅层上来进行分析。并且,文章中主要做的是资料的整合、加工工作,因此有许多需要参考引用的资料文献。本文已在末尾处附有参考的资料,在这里,我对所引用的资料的作者表达真挚的谢意!
【关键词】 人工智能 马尔可夫链 强化学习
正文
零. 什么是马尔可夫链?
1. 从古诗文之美到数学思维之妙
“悟已往之不谏,知来者之可追”,这是陶渊明的诗,其中的诗文之美令人陶醉其中。但是,如此如诗如画的田园风光里,正藏着值得深思的哲学思想——过去的事已经无法挽回,想要得到将来,就必须要把握现在。
2. 这就是马尔科夫链
马尔可夫链(Markov Chain, MC)是概率论和数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process)。
马尔可夫性质——数学公式版
马尔可夫性质——能听懂版
就是如同陶渊明所说的,在给定当前知识或信息的情况下,过去对于预测将来是无关的。这就是马尔可夫性质。 具有这样的性质的一个离散的序列(序列中的状态可以为任意),就是马尔科夫链。
3. 马尔可夫链的其他相关数学概念
状态空间:这些变量的范围,即它们所有可能取值的集合,被称为状态空间,而集合中每个元素的值则称为在时间n的状态。
转移概率:状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。可以将状态转移概率列出成为一个状态转移矩阵。
正定性:在状态转移矩阵中,每个状态转移概率皆为正数。
有限性:状态转移阵中的每一行状态转移阵中每行相加均为1。
图中圈1、圈2、圈3即为状态,λ1、λ2为状态转移概率
壹. 马尔可夫链的历史
马尔科夫链其实是马尔科夫过程在状态与概率皆离散的情况下的特殊情况,而在马尔科夫过程的研究中,不少科学家前赴后继奉献了许多成果。