题意:
给定一棵树,然后让你加入尽量少的边,使得整张图不存在割边。
思路:
上来一看就把叶子节点挨个直接连起来了。这样是不对的,因为可能会陷入某一个子树。
如图红色线连的就是错的,这样会陷入子树中,而当其父节点与割边相连是,剪断割边就不连通了 。所以要子树要与外界连通,方法时,找一个度大于1的点作为根,dfs寻找,每当找足3个叶子时,把左右两边的连在一起,中间剩下等待下一轮3个。最后可能会剩下0,1,2 个叶子。
0个叶子不用处理。1个叶子就把他和根连在一起。2个叶子就把他俩连在一起。
// 添加最少边,使得任意删除一条边后图仍然连通
#include <cstdio>
#include <queue>
#include <vector>
#include <cstring>
#include <algorithm>
#define fi first
#define se second
#define pii pair<int,int>
using namespace std;
const int INF = 0x3f3f3f3f;
typedef long long LL;
const int maxn = 100000+5;
int n;
vector<int> G[maxn], leaves;
vector<pii> ans;
int dfs(int u, int fa){
for(int i = 0; i < G[u].size(); ++i){
if(G[u][i] != fa) dfs(G[u][i], u);
}
if(G[u].size() == 1){
leaves.push_back(u);
if(leaves.size() == 3){
int t = leaves[1];
ans.push_back(make_pair(leaves[0], leaves[2]));
leaves.clear();
leaves.push_back(t);
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d",&n) == 1&&n){
for(int i = 1; i <= n; ++i) G[i].clear(); ans.clear(); leaves.clear();
int root = -1;
for(int i = 0; i < n-1; ++i){
int u,v; scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
if(G[u].size() > 1) root = u;
if(G[v].size() > 1) root = v;
}
if(root != -1) dfs(root , -1);
if(leaves.size() == 2){ ans.push_back(make_pair(leaves[0], leaves[1])); }
else if(leaves.size() == 1){ ans.push_back(make_pair(leaves[0], root)); }
printf("%d\n", ans.size());
for(int i = 0; i < ans.size(); ++i){
printf("%d %d\n", ans[i].fi, ans[i].se);
}
}
return 0;
}