题意:
求一条从1到n的路径,不要求整个路径最短,但路径中的每一步要尽量小,求这个路径中最长的那一步。
思路:
从初始点开始,每次选择离它最近的点u和距离d,ans = max(ans, d),将u加入已经探测过的集合,集合中的点相互之间距离为0,下一轮继续向外探测,如此循环,最后当找到目标的时候,ans就是路径中最长的一步。有点像最小生成树
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int maxn = 1000+5;
using namespace std;
int n;
double x[maxn], y[maxn], G[maxn][maxn], d[maxn];
bool vis[maxn];
double calc(int i, int j){
return sqrt((x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]));
}
int main()
{
//freopen("in.txt","r",stdin);
int kase = 1;
while(scanf("%d",&n) == 1&&n){
memset(vis, 0, sizeof(vis));
for(int i = 0; i < n; ++i)
scanf("%lf%lf",&x[i],&y[i]);
// 预处理
for(int i = 0; i < n; ++i){
G[i][i] = 0;
for(int j = 0; j < i; ++j){
G[i][j] = G[j][i] = calc(i, j);
}
}
for(int i = 0; i < n; ++i) d[i] = G[0][i];
d[0] = 0;
vis[0] = 1;
double ans = 0;
for(int i = 1; i < n; ++i){
double m = INF;
int x = 0;
for(int j = 0; j < n; ++j) if(!vis[j]&&d[j] < m) m = d[x = j];
if(ans < m) ans = m;
if(x == 1) break;
vis[x] = 1;
for(int j = 0; j < n; ++j) if(!vis[j]) d[j] = min(d[j], G[x][j]);
}
printf("Scenario #%d\nFrog Distance = %.3f\n\n",kase++,ans);
}
fclose(stdin);
return 0;
}