Poj2253最短路变形

题意:

求一条从1到n的路径,不要求整个路径最短,但路径中的每一步要尽量小,求这个路径中最长的那一步。

思路:

从初始点开始,每次选择离它最近的点u和距离d,ans = max(ans, d),将u加入已经探测过的集合,集合中的点相互之间距离为0,下一轮继续向外探测,如此循环,最后当找到目标的时候,ans就是路径中最长的一步。有点像最小生成树

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int maxn = 1000+5;
using namespace std;

int n;
double x[maxn], y[maxn], G[maxn][maxn], d[maxn];
bool vis[maxn];
double calc(int i, int j){
	return sqrt((x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]));
}

int main()
{
    //freopen("in.txt","r",stdin);
    int kase = 1;
	while(scanf("%d",&n) == 1&&n){
		
		memset(vis, 0, sizeof(vis));
		for(int i = 0; i < n; ++i)
			scanf("%lf%lf",&x[i],&y[i]);
		// 预处理 
		for(int i = 0; i < n; ++i){
			G[i][i] = 0;
			for(int j = 0; j < i; ++j){
				G[i][j] = G[j][i] = calc(i, j);
			}
		}
		for(int i = 0; i < n; ++i) d[i] = G[0][i];
		d[0] = 0;
		vis[0] = 1;
		
		double ans = 0;
		for(int i = 1; i < n; ++i){
			double m = INF;
			int x = 0;
			for(int j = 0; j < n; ++j) if(!vis[j]&&d[j] < m) m = d[x = j];
			if(ans < m) ans = m;
			if(x == 1) break; 
			vis[x] = 1;
			for(int j = 0; j < n; ++j) if(!vis[j]) d[j] = min(d[j], G[x][j]);
		}
		printf("Scenario #%d\nFrog Distance = %.3f\n\n",kase++,ans);
	}
    fclose(stdin);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值