POJ3321-AppleTree(树状数组)

题意:

给出一个苹果树,每个节点最多只能有一个苹果,一开始都有一个苹果,有两种操作:
C X,如果X点有苹果,则拿掉,如果没有,则新长出一个
Q X,查询X点与它的所有后代分支一共有几个苹果

思路:

首先自己对苹果进行编号,每个节点存两个值,一个是dfs访问次序编号left,一个是其子树中最大的编号rig。这个点的右值,包含了当前点所有的后代,后代必然是所有编号大于本节点的点,那么祖先呢,那必然是编号小于这个节点的点。对于第一个操作就是树状数组的单点更新,第二个操作就可以利用刚才存的rig,通过计算sum(rig[x])-sum(lef[x]-1)即可。

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int maxn = 100000+5;
using namespace std;
int n,m;
int C[maxn], left[maxn], rig[maxn];
char str[5];
bool has[maxn];		// 分支处有没有苹果 

// 图 
int head[maxn], cur;
struct Edge{
	int v, next;
}edges[maxn];
void init(int a){
	for(int i = 0; i <= a; ++i) head[i] = -1;
	cur = 0;
}
void addEdge(int u, int v){
	edges[cur].v = v;
	edges[cur].next = head[u]; head[u] = cur++;
}

int cnt;
void dfs(int u){
	left[u] = cnt++;
	for(int i = head[u]; i != -1; i = edges[i].next){
		int v = edges[i].v;
		dfs(v);
	}
	rig[u] = cnt-1;
}

int lowbit(int x){ return x & -x; }
void add(int x, int v){ for(int i = x; i <= n; i+= lowbit(i)) C[i]+= v; }
int sum(int x){
	int s = 0;
	for(int i = x; i > 0; i-= lowbit(i)) s+= C[i];
	return s; 
}

int main()
{
    //freopen("in.txt","r",stdin);
	while(scanf("%d",&n) == 1){
		memset(C, 0, sizeof(C));
		init(n);
		for(int i = 1; i <= n; ++i){ add(i, 1); has[i] = 1;}
		
		for(int i = 0; i < n-1; ++i){
			int u,v; scanf("%d%d",&u,&v);
			addEdge(u, v);
		}
		
		cnt = 1;
		dfs(1);
		//for(int i = 0; i <= 3; ++i) printf("%d ", rig[i]);
		
		scanf("%d", &m);
		for(int i = 0; i < m; ++i){
			int x; scanf("%s%d", str, &x);
			if(str[0] == 'C'){
				x = left[x];
				if(has[x]){ add(x, -1); has[x] = 0;} 
				else{ add(x, 1); has[x] = 1; }
			}
			else if(str[0] == 'Q'){
				int ans = sum(rig[x]) - sum(left[x]-1);
				printf("%d\n", ans);
			}
		}
	}
    fclose(stdin);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值