题意:
给出一个苹果树,每个节点最多只能有一个苹果,一开始都有一个苹果,有两种操作:
C X,如果X点有苹果,则拿掉,如果没有,则新长出一个
Q X,查询X点与它的所有后代分支一共有几个苹果
思路:
首先自己对苹果进行编号,每个节点存两个值,一个是dfs访问次序编号left,一个是其子树中最大的编号rig。这个点的右值,包含了当前点所有的后代,后代必然是所有编号大于本节点的点,那么祖先呢,那必然是编号小于这个节点的点。对于第一个操作就是树状数组的单点更新,第二个操作就可以利用刚才存的rig,通过计算sum(rig[x])-sum(lef[x]-1)即可。
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int maxn = 100000+5;
using namespace std;
int n,m;
int C[maxn], left[maxn], rig[maxn];
char str[5];
bool has[maxn]; // 分支处有没有苹果
// 图
int head[maxn], cur;
struct Edge{
int v, next;
}edges[maxn];
void init(int a){
for(int i = 0; i <= a; ++i) head[i] = -1;
cur = 0;
}
void addEdge(int u, int v){
edges[cur].v = v;
edges[cur].next = head[u]; head[u] = cur++;
}
int cnt;
void dfs(int u){
left[u] = cnt++;
for(int i = head[u]; i != -1; i = edges[i].next){
int v = edges[i].v;
dfs(v);
}
rig[u] = cnt-1;
}
int lowbit(int x){ return x & -x; }
void add(int x, int v){ for(int i = x; i <= n; i+= lowbit(i)) C[i]+= v; }
int sum(int x){
int s = 0;
for(int i = x; i > 0; i-= lowbit(i)) s+= C[i];
return s;
}
int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d",&n) == 1){
memset(C, 0, sizeof(C));
init(n);
for(int i = 1; i <= n; ++i){ add(i, 1); has[i] = 1;}
for(int i = 0; i < n-1; ++i){
int u,v; scanf("%d%d",&u,&v);
addEdge(u, v);
}
cnt = 1;
dfs(1);
//for(int i = 0; i <= 3; ++i) printf("%d ", rig[i]);
scanf("%d", &m);
for(int i = 0; i < m; ++i){
int x; scanf("%s%d", str, &x);
if(str[0] == 'C'){
x = left[x];
if(has[x]){ add(x, -1); has[x] = 0;}
else{ add(x, 1); has[x] = 1; }
}
else if(str[0] == 'Q'){
int ans = sum(rig[x]) - sum(left[x]-1);
printf("%d\n", ans);
}
}
}
fclose(stdin);
return 0;
}