leetcode204(计数质数:埃氏筛)

博客介绍了如何利用埃氏筛法来解决LeetCode第204题,即统计小于非负整数n的所有质数数量。题解通过两种方法阐述,一是枚举法,逐一检查每个数是否为质数;二是埃氏筛法,通过标记质数的倍数来排除合数,有效地减少计算量。
摘要由CSDN通过智能技术生成

统计所有小于非负整数 n 的质数的数量。

题解一:枚举法,对于小于非负整数n的每一个数,都检查它是否为质数。

class Solution {
    public int countPrimes(int n) {
        int ans = 0;
        for (int i = 2; i < n; ++i) {
            ans += isPrime(i) ? 1 : 0;
        }
        return ans;
    }
    //判断是否为质数
    public boolean isPrime(int x) {
        for (int i = 2; i*i  <= x; ++i) {
            if (x % i == 0) {
                return false;
            }
        }
        return true;
    }
}

题解二:埃氏筛,我们可以考虑到这样一个事实,如果x是质数,则2x、3x、4x…一定不是质数,从这一点入手的话,我们可以设置一个数组int [ ]isPrime,如果isPrime[ i ]=1,则说明 i 是质数,如果isPrime[ i ]=0,则说明 i 不是质数,我们依旧是遍历区间[ 2,n ]中的每一个数 i,如果i是质数,则将isPrime[ 2i ]、isPrime[ 3i ]、isPrime[ 4i ]…设置为0,显然这样做的话是不会将质数的isPrime值设置为0的,也不会漏掉任何一个合数

class Solution {
    public int countPrimes(int n) {
            int count=0;
            int []isPrimes=new int[n];
            Arrays.fill(isPrimes,1);
            for(int i=2;i<n;i++){
                if(isPrimes[i]==1){
                    count++;
                    //i*i-1、i*i-2...i*2已经被设置为合数
                    if ((long) i * i < n) {
                        for (int j = i * i; j < n; j += i) {
                            isPrimes[j] = 0;
                        }
                    }
                }
            }
            return count;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值