给定一个已排序的正整数数组 nums,和一个正整数 n 。从 [1, n] 区间内选取任意个数字补充到 nums 中,使得 [1, n] 区间内的任何数字都可以用 nums 中某几个数字的和来表示。请输出满足上述要求的最少需要补充的数字个数。
示例 1:
输入: nums = [1,3], n = 6
输出: 1
解释:
根据 nums 里现有的组合 [1], [3], [1,3],可以得出 1, 3, 4。
现在如果我们将 2 添加到 nums 中, 组合变为: [1], [2], [3], [1,3], [2,3], [1,2,3]。
其和可以表示数字 1, 2, 3, 4, 5, 6,能够覆盖 [1, 6] 区间里所有的数。
所以我们最少需要添加一个数字。
题解:贪心算法
首先,我们要了解对于正整数 x,如果区间 [1,x-1] 内的所有数字都已经被覆盖,且 x 在数组中,则区间 [1,2x)内的所有数字也是被覆盖的;同时,对于任意完全被覆盖的区间[1,x),如果给定一个数a添加到正整数数组 nums中,如果a<=x,则[1,x+a)区间是被完全覆盖的,否则在a>x时,[1,x+a)区间不能被完全覆盖。
按照以上两点基本规律我们可以设计算法:
1. 设置变量x=1,逐渐增大x的值,找可以被覆盖的最小区间[1,x)。
2. 将x加入正整数数组nums,则可以被完全覆盖的最小区间变为[1,2x)。同时最小需要补充的数字个数 ans=ans+1。
3. 重复上述步骤直到x>n,得到最终结果ans。
class Solution {
public int minPatches(int[] nums, int n) {
int index=0;
long edge=1;
int ans=0;
while(edge<=n){
if(index<nums.length&&nums[index]<=edge){
edge+=nums[index];
index++;
}else {
edge*=2;
ans++;
}
}
return ans;
}
}