leetcode665(非递减数列:数组遍历)

该博客讨论了一种算法问题,即在最多改变一个元素的情况下,如何判断一个整数数组是否能变成非递减数列。通过遍历数组并采取两种策略——保持相邻元素相等或改变较小元素,可以解决此问题。文章提供了具体的代码实现,并解释了算法逻辑。
摘要由CSDN通过智能技术生成

给你一个长度为 n 的整数数组,请你判断在 最多 改变 1 个元素的情况下,该数组能否变成一个非递减数列。
我们是这样定义一个非递减数列的: 对于数组中所有的 i (0 <= i <= n-2),总满足 nums[i] <= nums[i + 1]。

示例 1:
输入: nums = [4,2,3]
输出: true
解释: 你可以通过把第一个4变成1来使得它成为一个非递减数列。

题解:数组遍历

      对于一个非递减数列,当我们遍历这个数组时,这个数组一定满足nums[ i ]<=nums[ i+1 ];对于题中所给定的整数数组,可能会出现nums[ i ]>nums[ i+1 ]的情况,此时,我们有两种改变数字的策略,一是令nums[ i ]=nums[ i+1 ],二是令nums[ i+1 ]=nums[ i ],我们思考后可以发现,策略一是优于策略二的,因为策略一是改变当前遍历到的数字,对之后的遍历不会产生影响,而策略二是增大了下一个即将遍历到的数字,可能会破坏之后的数组子序列的单调非递减性。
      经过上述分析,我们可以梳理出算法:遍历数组,如果不满足nums[ i ]<=nums[ i+1 ],则先考虑能否使用策略一,不能使用时再考虑使用策略二,但如果是第二次出现nums[ i ]<=nums[ i+1 ],则直接返回false。

class Solution {
    public boolean checkPossibility(int[] nums) {
        boolean find=false;
        int len= nums.length;
        for(int i=0;i+1<len;i++){
            if(nums[i]>nums[i+1]){
                if(!find){
                    //判断能否使用策略一
                    if(i==0||nums[i-1]<=nums[i+1]){
                        find=true;
                    }else{
                        find=true;
                        //使用策略二
                        nums[i+1]=nums[i];
                    }
                }else{
                    return false;
                }
            }
        }
        return true;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值