给你一个长度为 n 的整数数组,请你判断在 最多 改变 1 个元素的情况下,该数组能否变成一个非递减数列。
我们是这样定义一个非递减数列的: 对于数组中所有的 i (0 <= i <= n-2),总满足 nums[i] <= nums[i + 1]。
示例 1:
输入: nums = [4,2,3]
输出: true
解释: 你可以通过把第一个4变成1来使得它成为一个非递减数列。
题解:数组遍历
对于一个非递减数列,当我们遍历这个数组时,这个数组一定满足nums[ i ]<=nums[ i+1 ];对于题中所给定的整数数组,可能会出现nums[ i ]>nums[ i+1 ]的情况,此时,我们有两种改变数字的策略,一是令nums[ i ]=nums[ i+1 ],二是令nums[ i+1 ]=nums[ i ],我们思考后可以发现,策略一是优于策略二的,因为策略一是改变当前遍历到的数字,对之后的遍历不会产生影响,而策略二是增大了下一个即将遍历到的数字,可能会破坏之后的数组子序列的单调非递减性。
经过上述分析,我们可以梳理出算法:遍历数组,如果不满足nums[ i ]<=nums[ i+1 ],则先考虑能否使用策略一,不能使用时再考虑使用策略二,但如果是第二次出现nums[ i ]<=nums[ i+1 ],则直接返回false。
class Solution {
public boolean checkPossibility(int[] nums) {
boolean find=false;
int len= nums.length;
for(int i=0;i+1<len;i++){
if(nums[i]>nums[i+1]){
if(!find){
//判断能否使用策略一
if(i==0||nums[i-1]<=nums[i+1]){
find=true;
}else{
find=true;
//使用策略二
nums[i+1]=nums[i];
}
}else{
return false;
}
}
}
return true;
}
}