▲
1. 这一切是如何开始的—Web上庞大的数据!
2. 使用Nutch抓取Web数据
3. 要保存Web上庞大的数据——HDFS应运而生
4. 如何使用这些庞大的数据?
5. 采用Java或任何的流/管道语言构建MapReduce框架用于编码并进行分析
6. 如何获取Web日志,点击流,Apache日志,服务器日志等非结构化数据——fuse,webdav, chukwa, flume, Scribe
7. Hiho和sqoop将数据加载到HDFS中,关系型数据库也能够加入到Hadoop队伍中
8. MapReduce编程需要的高级接口——Pig, Hive, Jaql
9. 具有先进的UI报表功能的BI工具- Intellicus
10. Map-Reduce处理过程使用的工作流工具及高级语言
11. 监控、管理hadoop,运行jobs/hive,查看HDFS的高级视图—Hue, karmasphere, eclipse plugin, cacti, ganglia
12. 支持框架—Avro (进行序列化), Zookeeper (用于协同)
13. 更多高级接口——Mahout, Elastic map Reduce
14. 同样可以进行OLTP——Hbase