RDD
16、计算出每个地区的地点人数最多的前3名?
studentRDD.map(line => (line._4,line._7.toInt))
.groupByKey()
.map(line => {
(line._1, line.2.toList.sortWith( > _).take(3)) //按照降序进行排列
}).collect().foreach(println)
sparkSql
/4.4、分别统计出男生和女生的分数前三名
// spark.sql(“SELECT *,Row_Number() OVER (PARTITION BY sex ORDER BY scores DESC) AS TOPN FROM student_scores”).show(100)
spark.sql(“select * from (SELECT *, Row_Number() OVER (partition by sex ORDER BY scores desc) topn FROM student_scores) t1 where t1.topn<=3”).show()
本文深入探讨了使用RDD及Spark SQL进行复杂数据处理的方法,包括如何找出各地区地点人数最多的前三名,以及按性别分类统计学生分数的前三名。通过具体代码示例,展示了数据排序、分组和聚合等高级操作。
399

被折叠的 条评论
为什么被折叠?



