hdu - 3667 最小费用最大流 拆边

题意:求从城市1运送K单位物品到城市n的最小花费。给定的有向边,每条边都有其容量c,并且,产生的费用是 a * ( f * f ),其中f是这条边上的流量,a是给出的系数。

思路:我们以前做的 花费是 a*f ,而现在是 a*f*f所以我们要变为 a*f 

那么就是, 第一次运送时费用为a,第二次取这条路时费用为3a(即流量为2时费用值为a+3a=4a),……

第i次取这条路时费用为(2*i-1)*a 

建图:u->v连c条边:(u, v, 1, (2 * i - 1) * a)

链接:hdu 3667

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <deque>
#include <sstream>
#define INF 0x3f3f3f3f
using namespace std;

//最小费用最大流模版.求最大费用最大流建图时把费用取负即可。
//无向边转换成有向边时需要拆分成两条有向边。即两次加边。
const int maxn = 10005;
const int maxm = 3000200;
const int inf = 0x3f3f3f3f;

struct Edge {
    int v, cap, cost, next;
}p[maxm << 1];

int e, sumFlow, n, m, sp, tp;
int head[maxn], dis[maxn], pre[maxn];
bool vis[maxn];

void init() {
    e = 0;
    memset(head, -1, sizeof(head));
}

void addEdge(int u, int v, int cap, int cost) {
    p[e].v = v; p[e].cap = cap; p[e].cost = cost;
    p[e].next = head[u]; head[u] = e++;
    p[e].v = u; p[e].cap = 0; p[e].cost = -cost;
    p[e].next = head[v]; head[v] = e++;
}

bool spfa(int s,int t) {
    int u, v;
    queue<int>q;
    memset(vis, false, sizeof(vis));
    memset(pre, -1, sizeof(pre));
    memset(dis, inf, sizeof(dis));
    vis[s] = true;
    dis[s] = 0;
    q.push(s);
    while(!q.empty()) {
        u = q.front();
        q.pop();
        vis[u] = false;
        for(int i = head[u]; i != -1; i = p[i].next) {
            v = p[i].v;
            if(p[i].cap && dis[v] > dis[u] + p[i].cost) {
                dis[v] = dis[u] + p[i].cost;
                pre[v] = i;
                if(!vis[v]) {
                    q.push(v);
                    vis[v] = true;
                }
            }
        }
     }
     if(dis[t] == inf)
         return false;
     return true;
}

int MCMF(int s, int t) {
    int flow = 0; // 总流量
    int minflow, mincost;
    mincost = 0;
    while(spfa(s, t)) {
        minflow = inf + 1;
        for(int i = pre[t]; i != -1; i = pre[p[i^1].v]) {
            if(p[i].cap < minflow) {
                minflow = p[i].cap;
            }
        }
        flow += minflow;
        for(int i = pre[t]; i != -1; i = pre[p[i^1].v]) {
            p[i].cap -= minflow;
            p[i^1].cap += minflow;
        }
        mincost += dis[t] * minflow;
    }
    sumFlow = flow; // 最大流
    return mincost;
}

int main ()
{
    int t, kcase = 0;
    int k;
    while(~scanf("%d %d %d", &n, &m, &k) && n) {
        init();
        sp = 0, tp = n;
        addEdge(sp, 1, k, 0);
        int ui, vi, ai, ci;
        for(int i = 0; i < m; i++) {
            scanf("%d %d %d %d", &ui, &vi, &ai, &ci);
            for(int j = 1; j <= ci; j++) {
                addEdge(ui, vi, 1, (2 * j - 1) * ai);
            }
        }
        int ans = MCMF(sp, tp);
        if(sumFlow != k) {
            ans = -1;
        }
        printf("%d\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值