poj - 1502 spfa最短路模板题 string 转换

题意:N个处理器要进行信息传递,处理器i传递信息给自己不需要时间,处理器i与处理器j之间相互传递信息的时间是一样的,不同处理器之间传递信息所需要的时间由一个矩阵的下三角给出。若矩阵对应位置为x,则说明相应的两个处理器之间无法传递信息。求从第一个处理器传递信息到其他所有处理器最少需要多少时间。

题目不难最短路算是模板题了,不过新学了一个字符串转int的函数

string str;

int n = atoi(str.c_str());//同样有atol(long),atof(float),atod(double)。

链接:poj 1502

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cstdlib>
#define inf 0x3f3f3f3f

using namespace std;

const int maxn = 1005;
const int maxm = 1000500;

int n, m, s, t;   //n为点数 s为源点
int head[maxn]; //head[from]表示以head为出发点的邻接表表头在数组es中的位置,开始时所有元素初始化为-1
int d[maxn]; //储存到源节点的距离,在Spfa()中初始化
int cnt[maxn];
bool inq[maxn]; //这里inq作inqueue解释会更好,出于习惯使用了inq来命名,在Spfa()中初始化
int nodep;  //在邻接表和指向表头的head数组中定位用的记录指针,开始时初始化为0
int pre[maxn];

struct node {
    int v, w, next;
}es[maxm];

void init() {
    for(int i = 1; i <= n; i++) {
        d[i] = inf;
        inq[i] = false;
        cnt[i] = 0;
        head[i] = -1;
        pre[i] = -1;
    }
    nodep = 0;
}

void addedge(int from, int to, int weight)
{
    es[nodep].v = to;
    es[nodep].w = weight;
    es[nodep].next = head[from];
    head[from] = nodep++;
}

bool spfa()
{
    queue<int> que;
    d[s] = 0;    //s为源点
    inq[s] = 1;
    que.push(s);
    while(!que.empty()) {
        int u = que.front();
        que.pop();
        inq[u] = false;   //从queue中退出
        //遍历邻接表
        for(int i = head[u]; i != -1; i = es[i].next) {  //在es中,相同from出发指向的顶点为从head[from]开始的一项,逐项使用next寻找下去,直到找到第一个被输
                                                        //入的项,其next值为-1
            int v = es[i].v;
            if(d[v] > d[u] + es[i].w) { //松弛(RELAX)操作
                d[v] = d[u] + es[i].w;
                //pre[v] = u;
                if(!inq[v]) {      //若被搜索到的节点不在队列que中,则把to加入到队列中去
                    inq[v] = true;
                    que.push(v);
                    if(++cnt[v] > n) {
                        return false;
                    }
                }
            }
        }
    }
    return true;
}

void putpath() {
    stack<int> path;
    int now = t;
    while(1) {
        path.push(now);
        if(now == s) {
            break;
        }
        now = pre[now];
    }
    while(!path.empty()) {
        now = path.top();
        path.pop();
        printf("%d\n", now);
    }
}

int mp[maxn][maxn];
int f[maxn];

int main()
{
    int T, kcase = 0;
    int w;
    while(cin >> n) {
        init();
        string ch;
        for(int i = 2; i <= n; i++) {
            getchar();
            for(int j = 1; j < i; j++) {
                cin >> ch;
                int a = atoi(ch.c_str());
                if(ch[0] != 'x') {
                    addedge(i, j, atoi(ch.c_str()));
                    addedge(j, i, atoi(ch.c_str()));
                }
            }
        }
        s = 1;
        int maxx = 0;
        if(spfa()) {
            for(int i = 2; i <= n; i++) {
                if(d[i] > maxx) {
                    maxx = d[i];
                }
            }
        }
        cout << maxx << endl;
    }
    return 0;
}



深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值