hdu - 3416 最短路spfa+最大流

题意: 有 n 个城市,知道了起点和终点,有 m 条有向边,问从起点到终点的最短路一共有多少条。(一条边只能走一次)

先通过最短路去除掉没有用的边,然后用一次最大流就是答案了。

不过要是去掉原图中不在最短路上的边,判断某条边是不是最短路上的边的时候:

要满足 d1[x[i]] + d[y[i]] + c[i] == d1[b]

链接:hdu 3416

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <stack>
#include <queue>
#define inf 0x3f3f3f3f

using namespace std;

const int maxn = 2005;
const int maxm = 200050;

int n = maxn, m, s, t;   //n为点数 s为源点
int sp, tp;//原点、汇点
int head[maxn]; //head[from]表示以head为出发点的邻接表表头在数组es中的位置,开始时所有元素初始化为-1
int d[maxn]; //储存到源节点的距离,在Spfa()中初始化
int d1[maxn];
int cnt[maxn];
bool inq[maxn]; //这里inq作inqueue解释会更好,出于习惯使用了inq来命名,在Spfa()中初始化
int pre[maxn], dis[maxn], cur[maxn];//cur为当前弧优化,dis存储分层图中每个点的层数(即到原点的最短距离),pre建邻接表
int nodep;  //在邻接表和指向表头的head数组中定位用的记录指针,开始时初始化为0
int cnt1 = 0;

struct node  {
    int v, next;
    int cap;
}mp[maxm];


struct node1 {
    int v, w, next;
}es[maxm];

void init() {
    for(int i = 0; i <= n; i++) {
        d[i] = inf;
        inq[i] = false;
        cnt[i] = 0;
        head[i] = -1;
    }
    nodep = 0;
}

void addedge(int from, int to, int weight)
{
    es[nodep].v = to;
    es[nodep].w = weight;
    es[nodep].next = head[from];
    head[from] = nodep++;
}

bool spfa()
{
    queue<int> que;
    d[s] = 0;    //s为源点
    inq[s] = 1;
    que.push(s);
    while(!que.empty()) {
        int u = que.front();
        que.pop();
        inq[u] = false;   //从queue中退出
        //遍历邻接表
        for(int i = head[u]; i != -1; i = es[i].next) {  //在es中,相同from出发指向的顶点为从head[from]开始的一项,逐项使用next寻找下去,直到找到第一个被输
                                                        //入的项,其next值为-1
            int v = es[i].v;
            if(d[v] > d[u] + es[i].w) { //松弛(RELAX)操作
                d[v] = d[u] + es[i].w;
                if(!inq[v]) {      //若被搜索到的节点不在队列que中,则把to加入到队列中去
                    inq[v] = true;
                    que.push(v);
                    if(++cnt[v] > n) {
                        return false;
                    }
                }
            }
        }
    }
    return true;
}


void init1() {  //不要忘记初始化
    cnt1 = 0;
    memset(pre, -1, sizeof(pre));
}

void add(int u, int v, int w) { //加边
    mp[cnt1].v = v;
    mp[cnt1].cap = w;
    mp[cnt1].next = pre[u];
    pre[u] = cnt1++;
    mp[cnt1].v = u;
    mp[cnt1].cap = 0;
    mp[cnt1].next = pre[v];
    pre[v] = cnt1++;
}

bool bfs() {  //建分层图
    memset(dis, -1, sizeof(dis));
    queue<int>q;
    while(!q.empty())
        q.pop();
    q.push(sp);
    dis[sp] = 0;
    int u, v;
    while(!q.empty()) {
        u = q.front();
        q.pop();
        for(int i = pre[u]; i != -1; i = mp[i].next) {
            v = mp[i].v;
            if(dis[v] == -1 && mp[i].cap>0) {
                dis[v] = dis[u] + 1;
                q.push(v);
                if(v == tp)
                    break;
            }
        }
    }
    return dis[tp] != -1;
}

int dfs(int u,int cap) {//寻找增广路
    if(u == tp || cap == 0)
    return cap;
    int res = 0, f;
    for(int i = cur[u]; i != -1; i = mp[i].next) {//
        int v = mp[i].v;
        if(dis[v] == dis[u] + 1 && (f = dfs(v, min(cap - res, mp[i].cap))) > 0) {
            mp[i].cap -= f;
            mp[i ^ 1].cap += f;
            res += f;
            if(res == cap)
                return cap;
        }
    }
    if(!res)
        dis[u] = -1;
    return res;
}

int dinic() {
    int ans = 0;
    while(bfs()) {
        for(int i = 0; i <= n; i++)
            cur[i] = pre[i];
        ans += dfs(sp, inf);
    }
    return ans;
}

int x[maxm], y[maxm], c[maxm];

int main()
{
    int T;
    cin >> T;
    while(T--) {
        scanf("%d %d", &n, &m);
        for(int i = 1; i <= m; i++) {
            scanf("%d %d %d", &x[i], &y[i], &c[i]);
        }
        int a, b;
        scanf("%d %d", &a, &b);
        init();
        for(int i = 1; i <= m; i++) {
            if(x[i] != y[i]) {
                addedge(x[i], y[i], c[i]);
            }
        }
        s = a;
        spfa();
        for(int i = 1; i <= n; i++) {
            d1[i] = d[i];
        }
        init();
        for(int i = 1; i <= m; i++) {
            if(x[i] != y[i]) {
                addedge(y[i], x[i], c[i]);
            }
        }
        s = b;
        spfa();
        init1();
        for(int i = 1; i <= m; i++) {
            if(x[i] != y[i] && d1[x[i]] + d[y[i]] + c[i] == d1[b]) {
                add(x[i], y[i], 1);
            }
        }
        sp = a, tp = b;
        printf("%d\n", dinic());
    }
    return 0;
}



阅读更多
个人分类: 最短路 网络流
上一篇poj - 3169 差分约束模板题
下一篇hdu - 4370 神建图最短路 spfa改进 邻接矩阵存图
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭