hdu - 6026 spfa + 遍历求关键路径数

题意:给出一个图,要求删除一些边,然后使得删除后的图是一颗树,并且各个点到0点的距离为原来图中的最短距离,求有多少种删法

最短路求出根到每个点的距离,然后遍历每一个点,找到满足最短路的关键路径数:d[i] + cost[i][j] == d[j] 

将所有这些值相乘即可得到。

链接:hdu 6026


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#include<string>
using namespace std;

const int maxn = 50 + 10;
const int inf = 1e9 + 7;
int n;
int cost[maxn][maxn];
int d[maxn], inq[maxn];

void spfa(int s)      //改进的spfaq
{
    memset(inq, 0, sizeof(inq));
    memset(d, inf, sizeof(d));
    queue<int> q;
    d[s] = 0;
    inq[s] = 1;
    q.push(s);
    while(!q.empty()) {
        int u = q.front();
        q.pop();
        inq[u] = 0;
        for(int i = 0; i < n; i++) {
            if(d[i] > d[u] + cost[u][i]) {
                d[i] = d[u] + cost[u][i];
                if(inq[i]) continue;
                inq[i] = 1;
                q.push(i);
            }
        }
    }
}

int main()
{
    while(~scanf("%d", &n)) {
        string str;
        for(int i = 0; i < n; i++) {
            cin >> str;
            for(int j = i + 1; j < n; j++) {
                if(str[j] - '0' == 0) {
                    cost[i][j] = cost[j][i] = inf;
                }
                else {
                    cost[i][j] = cost[j][i] = str[j] - '0';
                }
            }
        }
        spfa(0);
        /*for(int i = 0; i < n; i++) {
            cout << d[i] << " ";
        }
        cout << endl;*/
        long long ans = 1;
        for(int j = 1; j < n; j++) {
            long long res = 0;
            for(int i = 0; i < n; i++) {
                if(i == j) {
                    continue;
                }
                if(cost[i][j] == inf) continue;
                if(d[i] + cost[i][j] == d[j]) {
                    res++;
                }
            }
            if(res != 0) ans = (ans * res) % inf;
        }
        cout << ans << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值