一、康托展开
康托展开是一个全排列到一个自然数的双射,常用于构建hash表时的空间压缩。设有n个数(1,2,3,4,…,n),可以有组成不同(n!种)的排列组合,康托展开表示的就是是当前排列组合在n个不同元素的全排列中的名次。
公式:
其中, a[i]为整数,并且0 <= a[i] <= i, 0 <= i < n, 表示当前未出现的的元素中排第几个,这就是康托展开。
举个例子说明。
在(1,2,3,4,5)5个数的排列组合中,计算 34152的康托展开值。
- 首位是3,则小于3的数有两个,为1和2,a[5]=2,则首位小于3的所有排列组合为 a[0]*(5-1)!
- 第二位是4,则小于4的数有两个,为1和2,注意这里3并不能算,因为3已经在第一位,所以其实计算的是在第二位之后小于4的个数。因此a[4]=2
- 第三位是1,则在其之后小于1的数有0个,所以a[3]=0
- 第四位是5,则在其之后小于5的数有1个,为2,所以a[2]=1
- 最后一位就不用计算啦,因为在它之后已经没有数了,所以a[1]固定为0
- 根据公式:
X = 2 * 4! + 2 * 3! + 0 * 2! + 1 * 1! + 0 * 0!
= 2 * 24 + 2 * 6 + 1
= 61
所以比 34152 小的组合有61个,即34152是排第62。
二、逆康托展开
康托展开是一个全排列到一个自然数的双射,因此是可逆的。即对于上述例子,在(1,2,3,4,5)给出61可以算出起排列组合为 34152。由上述的计算过程可以容易的逆推回来,具体过程如下:
- 用 61 / 4! = 2余13,说明a[5]=2,说明比首位小的数有2个,所以首位为3。
- 用 13 / 3! = 2余1,说明a[4]=2,说明在第二位之后小于第二位的数有2个,所以第二位为4。
- 用 1 / 2! = 0余1,说明a[3]=0,说明在第三位之后没有小于第三位的数,所以第三位为1。
- 用 1 / 1! = 1余0,说明a[2]=1,说明在第二位之后小于第四位的数有1个,所以第四位为5。
- 最后一位自然就是剩下的数2啦。
- 通过以上分析,所求排列组合为 34152。
代码如下:
LL fac[N];//阶乘
void init() {
fac[0] = 1;
for(int i = 1; i < N; i ++) fac[i] = fac[i - 1] * i;
}
void cantor(int s[], LL num, int k) {//康托展开,把一个数字num展开成一个数组s,k是数组长度
int t;
bool h[N];//0到k-1,表示是否出现过
memset(h, 0, sizeof(h));
for(int i = 0; i < k; i++){
t = num / fac[k - i - 1];
num = num % fac[k - i - 1];
for(int j = 0, pos = 0; ; j++, pos++) {
if(h[pos]) j--;
if(j == t) {
h[pos] = true;
s[i] = pos + 1;
break;
}
}
}
}
void inv_cantor(int s[], LL &num, int k) {//康托逆展开,把一个数组s换算成一个数字num
int cnt;
num = 0;
for(int i = 0; i < k; i++) {
cnt = 0;
for(int j = i + 1; j < k; j++) {
if(s[i] > s[j]) cnt++;//判断几个数小于它
}
num += fac[k - i - 1] * cnt;
}
}
应用:
-
给定一个自然数集合组合一个全排列,所其中的一个排列组合在全排列中从大到小排第几位。
在上述例子中,在(1,2,3,4,5)的全排列中,34152的排列组合排在第62位。 -
反过来,就是逆康托展开,求在一个全排列中,第n个全排列是多少。
比如求在(1,2,3,4,5)的全排列中,第62个排列组合是34152。[注意具体计算中,要先 -1 才是其康托展开的值。 -
另外康托展开也是一个数组到一个数的映射,因此也是可用于hash,用于空间压缩。比如在保存一个序列,我们可能需要开一个数组,如果能够把它映射成一个自然数, 则只需要保存一个整数。