Codeforces Round #716 (Div. 2) D. Cut and Stick(主席树)

本文介绍了一种使用线段树进行区间更新与查询的优化方法,适用于处理大量区间修改及查询操作的问题。通过维护每个节点的区间和,并在更新时创建新节点来保持历史版本,支持高效地查询指定区间的元素个数。此方法特别适用于需要频繁进行区间更新和查询的应用场景。

 

const int N=3e5+5;
 
    int n,m;
    int i,j,k;
    int a[N];
    struct Node
    {
        int l,r;
        int sum;
    }T[N*40];
    int root[N],tot=0;

void update(int l,int r,int &x,int y,int pos)
{
    T[++tot]=T[y];
    T[tot].sum++;
    x=tot;
    if(l==r) return ;
    int mid=l+r>>1;
    if(mid>=pos) update(l,mid,T[x].l,T[y].l,pos);
    else update(mid+1,r,T[x].r,T[y].r,pos);
}
 
int query(int l,int r,int x,int y,int k)
{
    if(l==r)
    {
        if(T[y].sum-T[x].sum>k) return T[y].sum-T[x].sum;
        else return 0;
    }
    int L=T[T[y].l].sum-T[T[x].l].sum ;
    int R=T[T[y].r].sum-T[T[x].r].sum ;
    int mid=l+r>>1;
    if(L>k) return query(l,mid,T[x].l,T[y].l,k);
    else if(R>k) return query(mid+1,r,T[x].r,T[y].r,k);
    else return 0;
}

int main()
{
    //IOS;
    while(~sdd(n,m)){
        for(int i=1;i<=n;i++) sd(a[i]);
        for(int i=1;i<=n;i++) update(1,n,root[i],root[i-1],a[i]);
        for(int i=1;i<=m;i++){
            int l,r;
            sdd(l,r);
            int len=r-l+1;
            if(len%2) len=(len/2)+1;
            else len=len/2;
            int ans=query(1,n,root[l-1],root[r],len); //3
            //dbg(ans);
            if(ans==0) puts("1");
            else{
                int res=(r-l+1)-ans; //2
                if(ans<=2*res){
                    pd(ans-res);
                } else{
                    pd(res+ans-2*res);
                }
            }
        }
    }
    //PAUSE;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值