力扣每日一题3181.执行操作可获得的最大总奖励2

  题目描述:

给你一个整数数组 rewardValues,长度为 n,代表奖励的值。

最初,你的总奖励 x 为 0,所有下标都是 未标记 的。你可以执行以下操作 任意次 

  • 从区间 [0, n - 1] 中选择一个 未标记 的下标 i
  • 如果 rewardValues[i] 大于 你当前的总奖励 x,则将 rewardValues[i] 加到 x 上(即 x = x + rewardValues[i]),并 标记 下标 i

以整数形式返回执行最优操作能够获得的 最大 总奖励。

示例 1:

输入:rewardValues = [1,1,3,3]

输出:4

解释:

依次标记下标 0 和 2,总奖励为 4,这是可获得的最大值。

示例 2:

输入:rewardValues = [1,6,4,3,2]

输出:11

解释:

依次标记下标 0、2 和 1。总奖励为 11,这是可获得的最大值。

解题思路

       在上题中,我们设dp[i][j](true/false)为第一个i奖励后的状态,表示我们是否能得到j分。请注意,dp数组是一个布尔数组。我们只需要每个元素1个比特,所以我们可以使用比特集或类似的东西。我们只需要一个比特的“流”,并应用位操作来通过一个常数因子优化计算。

代码实现

class Solution {
public:
    public:
    int maxTotalReward(vector<int> &rewardValues)
    {
        ranges::sort(rewardValues);
        rewardValues.erase(unique(rewardValues.begin(), rewardValues.end()), rewardValues.end());

        bitset<100000> f{1};
        for (int v : rewardValues)
        {
            int shift = f.size() - v;
            // 左移 shift 再右移 shift,把所有 >= v 的比特位置 0
            // f |= f << shift >> shift << v;
            f |= f << shift >> (shift - v); // 简化上式
        }
        for (int i = rewardValues.back() * 2 - 1;; i--)
            if (f.test(i))
                return i;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值