LaTeX案例篇(2)

本篇仍然以2024年的草稿做演示。

代码如下

\documentclass{article}

\usepackage[UTF8]{ctex}
\usepackage{multicol}
\usepackage{geometry}
\usepackage{amsmath} % 确保导入了amsmath包
\usepackage{amsthm} % 导入定理环境包
\usepackage{enumitem} % 导入列表调整包
\geometry{a4paper, top=2.54cm, bottom=2.54cm, left=2.54cm, right=2.54cm}
\setlist{nosep} % 移除列表之间的额外间距
\begin{document}
	\begin{center}
		\fontsize{20pt}{48pt}
		\textbf{夺命一百题}
	\end{center}
	\fontsize{12pt}{30pt}
	\vspace{+0.5cm}
	1.用定义证明极限
	\[\lim_{n \to \infty} \dfrac{n^2 + \sin n}{2n^2 - 5} = \dfrac{1}{2}\]
	\newline
	\vspace{+0.5cm}
	2.求下列极限:\[\lim_{n \to \infty} \dfrac{x^n - x^{-n}}{x^n + x^{-n}}(x \neq 0)\]
	\newline
	\vspace{+0.5cm}
	3.求下列极限:\[\lim_{n \to \infty} \sqrt[4]{n^4 + 4^n}\]
	\newline
	\vspace{+0.5cm}
	4.求下列极限:\[\lim_{n \to \infty} \sum_{k=1}^{n} \dfrac{1}{k(k+1)(k+2)}\]
	\newline
	\vspace{+0.5cm}
	5.已知数列 \(\{a_n\}\)满足\[\lim_{n \to \infty} \dfrac{a_1 + a_2 + \cdots + a_n}{n} = a \quad (a \text{ 为有限数}),\]
	求极限
	\[\lim_{n \to \infty} \dfrac{a_n}{n}.\]
	\newline
	\vspace{+0.5cm}
	6.求极限\[\lim_{n \to \infty} \sum_{k=0}^{n-1} \dfrac{e^{\frac{1+k}{n}}}{n + \dfrac{k^2}{n^2}}.\]
	\newline
	\vspace{+0.5cm}
	7.设\(\ a_n=1+\dfrac{1}{2}+..+\dfrac{1}{n}-\ln n (n=1,2,...)\)利用不等式\(\dfrac{1}{n+1} < \ln(1+\dfrac{1}{n}) < \dfrac{1}{n}(n=1,2,...)\)证明:数列\({a_n}\)收敛。
	\vspace{+1cm}
	\newline
	8.设数列\({a_n}\)满足\(a_1=1,a_{n+1}=a_n+\dfrac{1}{a_n}(n=1,2,...)\),证明数列\({a_n}\)发散,并求极限\[\lim_{n \to \infty}\dfrac{{a_n}^2}{n}\].
	\newline
	9.用定义证明下列函数的极限:\[\lim_{x \to 3}\dfrac{\sqrt{1+x}-2}{x-3}=\dfrac{1}{4}\]
	\vspace{+0.5cm}
	\newline
	10.用定义证明下列函数的极限:\[\lim_{x \to +\infty}arctanx=\dfrac{\pi}{2}\]
	\vspace{+0.5cm}
	\newline
	11.求下列函数的极限:\[\lim_{x \to +\infty}(\sqrt{x+\sqrt{2x+\sqrt{3x}}}-\sqrt{x})\]
	\vspace{+0.5cm}
	\newline
	12.确定常数$a,b$的值,使得下列等式成立:\[{x \to -2}\dfrac{x^2-ax+b}{x^2-4}=\dfrac{1}{4}\]
	\vspace{+0.5cm}
	\newline
	13.若数列\(\{x_n\}\)和\(\{y_n\}\)满足\(\{x_ny_n\}\)为无穷小量,则下面命题正确的是:
	\newline
	(A)若\(\{x_n\}\)发散,则\(\{y_n\}\)必发散
	\newline
	(B)若\(\{x_n\}\)无界,则\(\{y_n\}\)必有界
	\newline
	(C)若\(\{x_n\}\)无界,则\(\{y_n\}\)必为无穷小量
	\newline
	(D)若\(\{\dfrac{1}{x_n}\}\)为无穷小量,则\(\{y_n\}\)必为无穷小量
	\newline
	(E)若\(\{x_n\}\)有界,则\(\{y_n\}\)必为无穷小量
	\vspace{+0.5cm}
	\newline
	14.当\(x\to 0\)时,\(e^{xcosx^2}-e^x\)是\(x\)的几阶无穷小量?
	\vspace{+0.5cm}
	\newline
	15.当\(x\to 1\)时,\(\sqrt[3]{1-\sqrt[3]{x}}\)是\(x-1\)的几阶无穷小量?
	\vspace{+0.5cm}
	\newline
	16.设\(k\)为非零常数,当\(n\to 0\)时,\(sin^2(\pi\sqrt{n^2+k^2})\)是\(\dfrac{1}{n}\)的几阶无穷小量?
	\vspace{+0.5cm}
	\newline
	17.求下列极限\[\lim_{x \to 0}\dfrac{\sqrt{1+x^2}+\sqrt{1-x^2}-2}{\sqrt{1+x^4}-1}\]
	\vspace{+0.5cm}
	\newline
	18.求下列极限\[\lim_{x \to 0}\dfrac{1-cosxcos2xcos3x}{x^2cosx^2}\]
	\vspace{+0.5cm}
	\newline
	19.已知函数$f(x)$在点$x=0$的某个邻域内连续,且\[\lim_{x \to 0}\dfrac{f(x)}{1-cosx}=-1\]则\(f(x)\)在点\(x=0\)的去心邻域内\\
	\((A) f(x)>f(0)\)\\
	\((B) f(x)<f(0)\)\\
	\((C) f(x)=f(0)\)\\
	\((D)\) 与\(f(0)\)的关系无法判断
	\vspace{+0.5cm}
	\newline
	20.讨论下列函数的连续性,如有间断点,指出其类型。
	\[
	f(x)=\dfrac{x}{|1-x|}ln|x|
	\]
	\vspace{+0.5cm}
	\newline
	21.设函数\(f\)在点\(x_0\)处连续,且\(f(x_0)>0\),证明:存在\(x_0\)的某个邻域\(N(x_0)\),使得当\(x \in N(x_0)\)时,有\(kf(x)>f(x_0)\),其中\(k>1\)。
	\vspace{+0.5cm}
	\newline
	22.设\(f(x)\)对一切实数满足\(f(x^2)=f(x)\),且在\(x=0\)与\(x=1\)处连续,证明:\(f(x)\)恒为常数。
	\vspace{+0.5cm}
	\newline
	23.证明:函数\(f(x)=sin(xcosx)\)在区间\([0,2\pi]\)上一致连续,在\([0,+\infty)\)上非一致连续。
	\vspace{+0.5cm}
	\newline
	24.设函数\(f(x) \in C([0,+\infty))\),且\(\lim_{x \to +\infty}f(x)\)存在,证明:函数\(f(x)\)在区间\([0,+\infty)\)上一致连续。
	\vspace{+0.5cm}
	\newline
	25.已知\(f(\pi)=2\),且\[\int_{0}^{\pi}[f(x)+f^{''}(x)]sinxdx=5\]求\(f(0)\).
	\vspace{+0.5cm}
	\newline
	26.设函数$f(x)$连续,证明:
	\[
	\int_{0}^{x}\bigg( \int_{0}^{t} f(u) du \bigg) dt = \int_{0}^{x} (x-t)f(t) dt
	\]
	\vspace{+0.5cm}
	\newline
	27.求下列定积分
	\[
	\int_{0}^{n\pi} sin^6\bigg(\dfrac{x}{2n}\bigg)dx;
	\]
	\vspace{+0.5cm}
	\newline
	28.求下列定积分
	\[
	\int_{0}^{n\pi} x|sinnx|dx
	\]
	\vspace{+0.5cm}
	\newline
	29.已知函数\(F(x)=\dfrac{\int_{0}^{x^2}ln(1+t^2)dt}{x^{\alpha}}\),设\(\lim_{x\to+\infty}F(x)=\lim_{x\to 0^+}=0\),则\(\alpha\)的取值范围为:
	\vspace{+0.5cm}
	\newline
	30.曲线\((2x-1)e^{\frac{1}{x}}\)的斜渐近线方程为:
	\vspace{+0.5cm}
	\newline
	31.函数\(f(x)=xln(1-x)\)的三阶带Peano型余项的马克劳林公式为:
	\vspace{+0.5cm}
	\newline
	32.设\(f(x)=x-\int_{0}^{\pi} f(t) dt\),求\(f(x)\)。
	\vspace{+0.5cm}
	\newline
	33.求极限\(\lim_{n\to\infty}\dfrac{\sqrt{1}+\sqrt{2}+...+\sqrt{n}}{\sqrt{(n+sinn)^3}}\)。
	\vspace{+0.5cm}
	\newline
	34.设悬链线方程为\(y=\frac{1}{2}(e^x+e^{-x})\),求它与直线\(x=0\),\(x=1\)以及\(x\)轴所围成的曲边梯形绕\(x\)轴旋转一周所得的旋转体的侧面积和体积。
	\vspace{+0.5cm}
	\newline
	35.已知\(f(x)=\int_{1}^{x}\frac{sint^2}{t}dt\),求\(\int_{0}^{1}xf(x)dx\).
	\vspace{+0.5cm}
\end{document}

同样的逐行解释

  • 头文件

\document{article},声明本文为 a r t i c l e article article
\usepackage[UTF8]{ctex},使用宏包,显示中文
\usepackage{multicol},为 L a T e X LaTeX LaTeX多栏排版的包。
\usepackage{geometry},为文本调用纸张的大小的包。
\usepackage{amsmath},为更强大的数学公式库。
剩下的我也不知道有什么作用,下文也证明确实没什么作用。

\documentclass{article}

\usepackage[UTF8]{ctex}
\usepackage{multicol}
\usepackage{geometry}
\usepackage{amsmath} 							% 确保导入了amsmath包
\usepackage{amsthm} 							% 导入定理环境包
\usepackage{enumitem}							% 导入列表调整包
\geometry{a4paper, top=2.54cm, bottom=2.54cm, left=2.54cm, right=2.54cm}
\setlist{nosep} 								% 移除列表之间的额外间距

这部分当时是KIMI写的,刚刚调试发现部分代码没有用处。
比如可以给代码删减到这个地步:

\documentclass{article}

\usepackage[UTF8]{ctex}
\usepackage[a4paper,top=2.54cm,bottom=2.54cm,left=2.54cm,right=2.54cm]{geometry}
\usepackage{amsmath}
  • 主函数

无需多言,文章开头必备。

\begin{document}

这里是经典的标题设置。

一对儿\begin{center}\end{center}说明作用域全体文字中轴对称
\fontsize{20pt}{48pt},设置字号行距
\textbf{...},对专门的文字进行加粗处理。

	\begin{center}
		\fontsize{20pt}{48pt}
		\textbf{夺命一百题}
	\end{center}

几个点:

1.使用\fontsize{12pt}{30pt}改变正文字体大小。
2.\vspace{+0.5cm}手动控制上下文间距为 0.5 c m 0.5cm 0.5cm v s p a c e vspace vspace v i r t u a l virtual virtual s p a c e space space(垂直高度)。
3.\dfrac{分子}{分母},与\frac{分子}{分母}相似,但配合上\[\]的分数会变大,观感会好很多。
4.a_n即为 a n a_n ann^k即为 n k n^k nk

	\fontsize{12pt}{30pt}
	\vspace{+0.5cm}
	1.用定义证明极限
	\[\lim_{n \to \infty} \dfrac{n^2 + \sin n}{2n^2 - 5} = \dfrac{1}{2}\]
	\newline

几个点:

1.\neq是不等于 ≠ \neq = 符号
2.\to是趋于 → \to

	\vspace{+0.5cm}
	2.求下列极限:\[\lim_{n \to \infty} \dfrac{x^n - x^{-n}}{x^n + x^{-n}}(x \neq 0)\]
	\newline

几个点:

\sqrt[4]{n^4 + 4^n}是开四次根号,有两种形态。
1.普通的开方:\sqrt{n},即为 n \sqrt{n} n
2.不普通的开方:\sqrt[n]{x},即为 x n \sqrt[n]{x} nx

	\vspace{+0.5cm}
	3.求下列极限:\[\lim_{n \to \infty} \sqrt[4]{n^4 + 4^n}\]
	\newline

重复内容,略过。

	\vspace{+0.5cm}
	4.求下列极限:\[\lim_{n \to \infty} \sum_{k=1}^{n} \dfrac{1}{k(k+1)(k+2)}\]
	\newline
	\vspace{+0.5cm}
	5.已知数列 \(\{a_n\}\)满足\[\lim_{n \to \infty} \dfrac{a_1 + a_2 + \cdots + a_n}{n} = a \quad (a \text{ 为有限数}),\]
	求极限
	\[\lim_{n \to \infty} \dfrac{a_n}{n}.\]
	\newline
	\vspace{+0.5cm}
	6.求极限\[\lim_{n \to \infty} \sum_{k=0}^{n-1} \dfrac{e^{\frac{1+k}{n}}}{n + \dfrac{k^2}{n^2}}.\]
	\newline
	\vspace{+0.5cm}
	7.设\(\ a_n=1+\dfrac{1}{2}+..+\dfrac{1}{n}-\ln n (n=1,2,...)\)利用不等式\(\dfrac{1}{n+1} < \ln(1+\dfrac{1}{n}) < \dfrac{1}{n}(n=1,2,...)\)证明:数列\({a_n}\)收敛。
	\vspace{+1cm}
	\newline
	8.设数列\({a_n}\)满足\(a_1=1,a_{n+1}=a_n+\dfrac{1}{a_n}(n=1,2,...)\),证明数列\({a_n}\)发散,并求极限\[\lim_{n \to \infty}\dfrac{{a_n}^2}{n}\].
	\newline
	9.用定义证明下列函数的极限:\[\lim_{x \to 3}\dfrac{\sqrt{1+x}-2}{x-3}=\dfrac{1}{4}\]
	\vspace{+0.5cm}

希腊字母:

\pi,为 π \pi π

	\newline
	10.用定义证明下列函数的极限:\[\lim_{x \to +\infty}arctanx=\dfrac{\pi}{2}\]
	\vspace{+0.5cm}

重复内容,略过。

	\newline
	11.求下列函数的极限:\[\lim_{x \to +\infty}(\sqrt{x+\sqrt{2x+\sqrt{3x}}}-\sqrt{x})\]
	\vspace{+0.5cm}
	\newline
	12.确定常数$a,b$的值,使得下列等式成立:\[{x \to -2}\dfrac{x^2-ax+b}{x^2-4}=\dfrac{1}{4}\]
	\vspace{+0.5cm}

两种新型数学公式声明:

\(...\),这种写法与$...$等价,都是直接跟着文字后面输入公式。
$$...$$,这种写法与\[...\]等价,都是另起一行居中插入公式。

	\newline
	13.若数列\(\{x_n\}\)和\(\{y_n\}\)满足\(\{x_ny_n\}\)为无穷小量,则下面命题正确的是:
	\newline
	(A)若\(\{x_n\}\)发散,则\(\{y_n\}\)必发散
	\newline
	(B)若\(\{x_n\}\)无界,则\(\{y_n\}\)必有界
	\newline
	(C)若\(\{x_n\}\)无界,则\(\{y_n\}\)必为无穷小量
	\newline
	(D)若\(\{\dfrac{1}{x_n}\}\)为无穷小量,则\(\{y_n\}\)必为无穷小量
	\newline
	(E)若\(\{x_n\}\)有界,则\(\{y_n\}\)必为无穷小量
	\vspace{+0.5cm}

重复内容,略过。

	\newline
	14.当\(x\to 0\)时,\(e^{xcosx^2}-e^x\)是\(x\)的几阶无穷小量?
	\vspace{+0.5cm}
	\newline
	15.当\(x\to 1\)时,\(\sqrt[3]{1-\sqrt[3]{x}}\)是\(x-1\)的几阶无穷小量?
	\vspace{+0.5cm}
	\newline
	16.设\(k\)为非零常数,当\(n\to 0\)时,\(sin^2(\pi\sqrt{n^2+k^2})\)是\(\dfrac{1}{n}\)的几阶无穷小量?
	\vspace{+0.5cm}
	\newline
	17.求下列极限\[\lim_{x \to 0}\dfrac{\sqrt{1+x^2}+\sqrt{1-x^2}-2}{\sqrt{1+x^4}-1}\]
	\vspace{+0.5cm}
	\newline
	18.求下列极限\[\lim_{x \to 0}\dfrac{1-cosxcos2xcos3x}{x^2cosx^2}\]
	\vspace{+0.5cm}
	\newline
	19.已知函数$f(x)$在点$x=0$的某个邻域内连续,且\[\lim_{x \to 0}\dfrac{f(x)}{1-cosx}=-1\]则\(f(x)\)在点\(x=0\)的去心邻域内\\
	\((A) f(x)>f(0)\)\\
	\((B) f(x)<f(0)\)\\
	\((C) f(x)=f(0)\)\\
	\((D)\) 与\(f(0)\)的关系无法判断
	\vspace{+0.5cm}
	\newline
	20.讨论下列函数的连续性,如有间断点,指出其类型。
	\[
	f(x)=\dfrac{x}{|1-x|}ln|x|
	\]
	\vspace{+0.5cm}

集合的一些专用符号:

\in,为 ∈ \in

	\newline
	21.设函数\(f\)在点\(x_0\)处连续,且\(f(x_0)>0\),证明:存在\(x_0\)的某个邻域\(N(x_0)\),使得当\(x \in N(x_0)\)时,有\(kf(x)>f(x_0)\),其中\(k>1\)。
	\vspace{+0.5cm}

重复内容,略过。

	\newline
	22.设\(f(x)\)对一切实数满足\(f(x^2)=f(x)\),且在\(x=0\)与\(x=1\)处连续,证明:\(f(x)\)恒为常数。
	\vspace{+0.5cm}
	\newline
	23.证明:函数\(f(x)=sin(xcosx)\)在区间\([0,2\pi]\)上一致连续,在\([0,+\infty)\)上非一致连续。
	\vspace{+0.5cm}
	\newline
	24.设函数\(f(x) \in C([0,+\infty))\),且\(\lim_{x \to +\infty}f(x)\)存在,证明:函数\(f(x)\)在区间\([0,+\infty)\)上一致连续。
	\vspace{+0.5cm}

比较生草的点:

1.函数的导数的一撇是直接用上标配合单引号加上去的。一阶导为 f^{'}(x) ,即 f ′ ( x ) f^{'}(x) f(x);二阶导为 f^{''}(x) ,即 f ′ ′ ( x ) f^{''}(x) f′′(x)
2.\bigg(,即为显示左大括号(是大一码的括号 ( \bigg( (,不是花括号 { \{ {);同理\bigg) ) \bigg) )

	\newline
	25.已知\(f(\pi)=2\),且\[\int_{0}^{\pi}[f(x)+f^{''}(x)]sinxdx=5\]求\(f(0)\).
	\vspace{+0.5cm}
	\newline
	26.设函数$f(x)$连续,证明:
	\[
	\int_{0}^{x}\bigg( \int_{0}^{t} f(u) du \bigg) dt = \int_{0}^{x} (x-t)f(t) dt
	\]
	\vspace{+0.5cm}
	\newline
	27.求下列定积分
	\[
	\int_{0}^{n\pi} sin^6\bigg(\dfrac{x}{2n}\bigg)dx;
	\]
	\vspace{+0.5cm}

重复内容,略过。

	\newline
	28.求下列定积分
	\[
	\int_{0}^{n\pi} x|sinnx|dx
	\]
	\vspace{+0.5cm}
	\newline
	29.已知函数\(F(x)=\dfrac{\int_{0}^{x^2}ln(1+t^2)dt}{x^{\alpha}}\),设\(\lim_{x\to+\infty}F(x)=\lim_{x\to 0^+}=0\),则\(\alpha\)的取值范围为:
	\vspace{+0.5cm}
	\newline
	30.曲线\((2x-1)e^{\frac{1}{x}}\)的斜渐近线方程为:
	\vspace{+0.5cm}
	\newline
	31.函数\(f(x)=xln(1-x)\)的三阶带Peano型余项的马克劳林公式为:
	\vspace{+0.5cm}
	\newline
	32.设\(f(x)=x-\int_{0}^{\pi} f(t) dt\),求\(f(x)\)。
	\vspace{+0.5cm}
	\newline
	33.求极限\(\lim_{n\to\infty}\dfrac{\sqrt{1}+\sqrt{2}+...+\sqrt{n}}{\sqrt{(n+sinn)^3}}\)。
	\vspace{+0.5cm}
	\newline
	34.设悬链线方程为\(y=\frac{1}{2}(e^x+e^{-x})\),求它与直线\(x=0\),\(x=1\)以及\(x\)轴所围成的曲边梯形绕\(x\)轴旋转一周所得的旋转体的侧面积和体积。
	\vspace{+0.5cm}
	\newline
	35.已知\(f(x)=\int_{1}^{x}\frac{sint^2}{t}dt\),求\(\int_{0}^{1}xf(x)dx\).
	\vspace{+0.5cm}

别忘了还有结尾需要加上。

\end{document}

后记

本篇还是作为笔记类型的LaTeX案例博客,论全面,还是请出门直至超详细LaTex数学公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值