Physics-Informed Neural Networks (PINN)

What is PINN?
Physics-Informed Neural Networks (PINN) are a computational approach that integrates physical laws (such as differential equations) with deep learning. The key features of PINN are:

Embedding Physical Constraints: By incorporating partial differential equations (PDEs) or ordinary differential equations (ODEs) into the loss function, the model ensures consistency with known physical laws.
Data Efficiency: Requires only a small amount of observational data instead of large experimental datasets.
Strong Generalization: Capable of solving high-dimensional problems that are challenging for traditional numerical methods.

Why is PINN Suitable for Inverse Problems?

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值