What is PINN?
Physics-Informed Neural Networks (PINN) are a computational approach that integrates physical laws (such as differential equations) with deep learning. The key features of PINN are:
Embedding Physical Constraints: By incorporating partial differential equations (PDEs) or ordinary differential equations (ODEs) into the loss function, the model ensures consistency with known physical laws.
Data Efficiency: Requires only a small amount of observational data instead of large experimental datasets.
Strong Generalization: Capable of solving high-dimensional problems that are challenging for traditional numerical methods.
Why is PINN Suitable for Inverse Problems?