“基于深度学习的网络热点话题的推荐研究”总结
一、简述
进入二十世纪以来,计算机网络技术飞速发展,现如今我们已经进入了信息网络时代,人们获取信息的途径逐渐由传统媒体转向网络平台。面对信息爆炸的时代中冗余的数据,人工处理已经是无济于事。因此如何快速准确的找出热点话题成为了研究热点。
二、学习内容
卷积神经网络文本特征提取
运用卷积神经网络在语言处理方面的作用获取文本特征,并且通过该模型能够对文献进行基于语义分析和话题分类的任务。
卷积神经网络是深度学习领域的重要模型之一,该模型的提出极大提升了计算速度和计算规模,为更复杂的工作提供了可能。卷积神经网络子啊文本处理的应用中,通常将词向量矩阵作为输入,由多次卷积核池化操作处理后,可提取深度的予以文本特征。在卷积核的设计和移动方式上图片处理与文本处理方式存在很大差异。
三、感悟
卷积神经网络技术最广泛应用于图像识别技术中,但在文本识别方面还是应用较少。本文中用到的是深度学习中的卷积神经网络在文本方面的应用,网络热点话题推荐,我认为还可以应用于网络热点话题的分类,网络文章的分类推荐,网络文字搜索方面的研究。