学习总结与感悟

“基于深度学习的网络热点话题的推荐研究”总结

一、简述

进入二十世纪以来,计算机网络技术飞速发展,现如今我们已经进入了信息网络时代,人们获取信息的途径逐渐由传统媒体转向网络平台。面对信息爆炸的时代中冗余的数据,人工处理已经是无济于事。因此如何快速准确的找出热点话题成为了研究热点。

二、学习内容

卷积神经网络文本特征提取
运用卷积神经网络在语言处理方面的作用获取文本特征,并且通过该模型能够对文献进行基于语义分析和话题分类的任务。
卷积神经网络是深度学习领域的重要模型之一,该模型的提出极大提升了计算速度和计算规模,为更复杂的工作提供了可能。卷积神经网络子啊文本处理的应用中,通常将词向量矩阵作为输入,由多次卷积核池化操作处理后,可提取深度的予以文本特征。在卷积核的设计和移动方式上图片处理与文本处理方式存在很大差异。在这里插入图片描述

三、感悟

卷积神经网络技术最广泛应用于图像识别技术中,但在文本识别方面还是应用较少。本文中用到的是深度学习中的卷积神经网络在文本方面的应用,网络热点话题推荐,我认为还可以应用于网络热点话题的分类,网络文章的分类推荐,网络文字搜索方面的研究。

内容概要:本文详细介绍了如何使用Matlab对地表水源热泵系统进行建模,并采用粒子群算法来优化每小时的制冷量和制热量。首先,文章解释了地表水源热泵的工作原理及其重要性,随后展示了如何设定基本参数并构建热泵机组的基础模型。接着,文章深入探讨了粒子群算法的具体实现步骤,包括参数设置、粒子初始化、适应度评估以及粒子位置和速度的更新规则。为了确保优化的有效性和实用性,文中还讨论了如何处理实际应用中的约束条件,如设备的最大能力和制冷/制热模式之间的互斥关系。此外,作者分享了一些实用技巧,例如引入混合优化方法以加快收敛速度,以及在目标函数中加入额外的惩罚项来减少不必要的模式切换。最终,通过对优化结果的可视化分析,验证了所提出的方法能够显著降低能耗并提高系统的运行效率。 适用人群:从事暖通空调系统设计、优化及相关领域的工程师和技术人员,尤其是那些希望深入了解地表水源热泵系统特性和优化方法的专业人士。 使用场景及目标:适用于需要对地表水源热泵系统进行精确建模和优化的情景,旨在找到既满足建筑负荷需求又能使机组运行在最高效率点的制冷/制热量组合。主要目标是在保证室内舒适度的前提下,最大限度地节约能源并延长设备使用寿命。 其他说明:文中提供的Matlab代码片段可以帮助读者更好地理解和复现整个建模和优化过程。同时,作者强调了在实际工程项目中灵活调整相关参数的重要性,以便获得更好的优化效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值