**93.复原IP地址 **
本期本来是很有难度的,不过 大家做完 分割回文串 之后,本题就容易很多了
题目链接/文章讲解 | 视频讲解
class Solution {
public:
vector<string> result;
// pointNum记录加入的点的数量,其等于3的时候停止
void backtracking(string& s, int startindex, int pointNum) {
// 终止条件,逗号为3说明已经切割完了
if (pointNum == 3) {
// 只要分了三次,也就是有三个点之后
// 直接判断最后一段,如果是的话就加入
if (isvalid(s, startindex, s.size() - 1)) {
result.push_back(s);
}
return;
}
for (int i = startindex; i < s.size(); i++) {
// 判断[startindex, i]这个区间的子串是否合法
if (isvalid(s, startindex, i)) {
s.insert(s.begin() + i + 1, '.');
pointNum++;
backtracking(s, i + 2, pointNum);
pointNum--;
s.erase(s.begin() + i + 1);
} else {
// 不合法直接结束本层循环
break;
}
}
}
bool isvalid(string& s, int start, int end) {
// 1.段位以0开头的数字不合法
// 2.段位里有非正整数字符不合法
// 3.段位如果大于255不合法
if (start > end)
return false;
// 0.0.0.0是合法的,start != end指的是01 0123这种情况
if (s[start] == '0' && start != end) {
return false;
}
int num = 0;
for (int i = start; i <= end; i++) {
if (s[i] > '9' || s[i] < '0') { // 遇到非数字字符不合法
return false;
}
num = num * 10 + (s[i] - '0');
if (num > 255) { // 如果大于255了不合法
return false;
}
}
return true;
}
vector<string> restoreIpAddresses(string s) {
backtracking(s, 0, 0);
return result;
}
};
**78.子集 **
子集问题,就是收集树形结构中,每一个节点的结果。 整体代码其实和 回溯模板都是差不多的。
题目链接/文章讲解 | 视频讲解
class Solution {
public:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums, int startindex) {
result.push_back(path);
// 确定结束条件
if (startindex >= nums.size()) {
return;
}
// 单层的处理逻辑
for (int i = startindex; i < nums.size(); i++) {
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
vector<vector<int>> subsets(vector<int>& nums) {
backtracking(nums, 0);
return result;
}
};
还是要熟悉这个回溯解题模板
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
**90.子集II **
大家之前做了 40.组合总和II 和 78.子集 ,本题就是这两道题目的结合,建议自己独立做一做,本题涉及的知识,之前都讲过,没有新内容。
题目链接/文章讲解 | 视频讲解
这题就是使用了之前的去重策略,在树层上进行去重,如果前一个数已经使用过了,就跳过一个树枝。
去重的时候要对数组进行排序,别忘记了
class Solution {
public:
vector<int> path;
vector<vector<int>> result;
vector<bool> used;
void backtracking(vector<int>& nums, int startindex) {
result.push_back(path);
if (startindex >= nums.size()) {
return ;
}
for (int i = startindex; i < nums.size(); i++) {
// 树层上去重,树层上进行跳过重复的
if (i > 0 && nums[i - 1] == nums[i] && used[i - 1] == false) {
continue;
}
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
used[i] = false;
}
}
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
// 初始化
used = vector<bool>(nums.size(), false);
// 去重需要排序
sort(nums.begin(), nums.end());
backtracking(nums, 0);
return result;
}
};