Perlis教授折磨脑子的家庭作业

本文介绍了四个C++编程问题的解决方案:1) 通过递归获取字符串的所有排列组合;2) 解决八皇后问题,展示所有可能的棋子配置;3) 列举不超过给定数值的所有素数;4) 实现任意大小矩阵的乘法运算。这些题目涵盖了递归、回溯、排序、数学和矩阵运算等核心编程概念。
摘要由CSDN通过智能技术生成

目录:

  1. 读取一个字符串,并输出它里面的所有组合

  2. “八皇后”问题(假设棋盘上有八个皇后,要求打印所有使八个皇后不会相互攻击的棋子配置)

  3. 给定一个数N,要求列出所有不大于N的素数

  4. 编写一个子程序,进行两个任意大小的矩阵乘法运算

题一:读取一个字符串,并输出它里面的所有组合

#include<stdio.h>
#include<string.h>
#define NUM 5
void repeat(int num);
void print();
char s[NUM + 1];
int k = 0;

struct list {
	int token;
	char load;
};
struct list  qsort[NUM + 1] = {0};
char copy[NUM + 1];
int main() {
	/*字符获取*/
	scanf("%s", s);
	int num;
	num = strlen(s);
	/*获取所有排序并打印*/
	repeat(num);

	return 0;
}

void repeat(int num) {
	/*递归获取各种排序(利用数学选座位法,序列数为 n*(n-1)*.....*1)*/
	for (int i = num, j = NUM; i > 0; i--)
	{
		while((j-1)>=0)
			while (qsort[--j].token == 0 && j>=0)
			{
				qsort[NUM - num].load = s[j];
				qsort[j].token = 1;

				if(num-1>0)
				repeat(num - 1);
			}

	}
	
	qsort[NUM].load = '\0';
			/*将数据复印*/
	for (int i = NUM ; i >= 0; i--)//如不想留,可根据自身情况进行删除改进
		copy[i] = qsort[i].load;
				/*标记清零*/
	for (int i = num, j = NUM - 1; i >= 0; i--, j--)
		for (int m = NUM - 1; m >= 0; m--)
			if (s[m] == copy[j])
				qsort[m].token = 0;
	/*打印*/
	if (num == 1)
		print();
	return;
}
void print() {
	static int k=0;
	printf("%s ", copy);
	k++;
	if (k % 10 == 0)
		printf("\n");
}

题二:“八皇后”问题(假设棋盘上有八个皇后,要求打印所有使八个皇后不会相互攻击的棋子配置)

解释:在8×8格的国际象棋上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

在这里插入图片描述

题解:由于八个棋子不同行不同列,所以总会有棋子在第1,2,3,4,5,6,7,8行,可将问题类化为将1 2 3 4 5 6 7
8排序,求有多少中排法?

所以将第一题中的NUM宏定义为8,字符串输入为“12345678”即可求解

#include<stdio.h>
#include<string.h>
#define NUM 8
void repeat(int num);
void print();
char s[NUM + 1];
int k = 0;

struct list {
	int token;
	char load;
};
struct list  qsort[NUM + 1] = {0};
char copy[NUM + 1];
int main() {
	/*字符获取*/
	scanf("%s", s);
	int num;
	num = strlen(s);
	/*获取所有排序并打印*/
	repeat(num);

	return 0;
}

void repeat(int num) {
	/*递归获取各种排序(利用数学选座位法,序列数为 n*(n-1)*.....*1)*/
	for (int i = num, j = NUM; i > 0; i--)
	{
		while((j-1)>=0)
			while (qsort[--j].token == 0 && j>=0)
			{
				qsort[NUM - num].load = s[j];
				qsort[j].token = 1;

				if(num-1>0)
				repeat(num - 1);
			}

	}
	
	qsort[NUM].load = '\0';
			/*将数据复印*/
	for (int i = NUM ; i >= 0; i--)//如不想留,可根据自身情况进行删除改进
		copy[i] = qsort[i].load;
				/*标记清零*/
	for (int i = num, j = NUM - 1; i >= 0; i--, j--)
		for (int m = NUM - 1; m >= 0; m--)
			if (s[m] == copy[j])
				qsort[m].token = 0;
	/*打印*/
	if (num == 1)
		print();
	return;
}
void print() {
	static int k=0;
	printf("%s ", copy);
	k++;
	if (k % 10 == 0)
		printf("\n");
}

题三:给定一个数N,要求列出所有不大于N的素数

#include<stdio.h>
int getnum();
void list(int n);
void print(int i);
int main() {
	int num;
	/*获取数字*/
	num = getnum();
	/*罗列并打印所有素数*/
	list(num);
	return 0;
}
int getnum() {
	int num;
	scanf("%d", &num);
	return num;
}
/*列出所有素数*/
void list(int n) {
	for (int i = 2; i <= n; i++) {
		int token = 1;
		for (int j = 2; j <= i / 2; j++) {
			/*通过特殊素数 2 */
			if (i == 2)
			{
				break;
			}
			/*跳过非素数*/
			if (i % j == 0) {
				token = 0;
				break;
			}
		}
		if(token ==1)
			print(i);
	}
}
/*打印*/
void print(int i) {
	printf("%d ",i);
}

题四:编写一个子程序,进行两个任意大小的矩阵乘法运算

#include<stdio.h>
/*输入矩阵行数和列数*/
#define LINE1 3
#define ROW1 2
#define LINE2 2
#define ROW2 3

void input1();
void input2();
void multiple();
/*输入矩阵*/
int matrix1[LINE1][ROW1];
int matrix2[LINE2][ROW2];
int main() {
	
    /*matrix1矩阵输入*/
    input1();
    /*matrix2矩阵输入*/
    input2();
    /*判断能否进行乘法*/
    if (ROW1 == LINE2) 
        multiple();
    else printf("第一个矩阵的列数不等于第二个矩阵的行数,矩阵不能进行乘法\n");

}

void input1() {
    printf("输入%d行%d列的matrix1矩阵:\n", LINE1, ROW1);
    /*输入matrix矩阵*/
    for (int i = 0; i < LINE1; i++) {
        for (int j = 0; j < ROW1; j++) {
            scanf("%d", &matrix1[i][j]);
        }
    }
}

void input2() {
    printf("输入%d行%d列的matrix2矩阵:\n", LINE2, ROW2);
    for (int i = 0; i < LINE2; i++) {
        for (int j = 0; j < ROW2; j++) {
            scanf("%d", &matrix2[i][j]);
        }
    }
}
/*矩阵乘法*/
void multiple() {
    printf("matrix1矩阵与matrix2矩阵乘积为:\n");
    for (int i = 0; i < LINE1; i++) {//最终获得行数
        for (int j = 0, sum = 0; j < ROW2; j++) {//最终获得列数

            for (int k = 0; k < LINE2; k++)
                sum += matrix1[i][k] * matrix2[k][j];
            /*打印矩阵*/
            printf("%3d ", sum);
            sum = 0;
        }
        printf("\n");
    }
}
标题以上代码均为个人撰写,如有问题,可留评论,共同探讨,共勉
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

入世浮尘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值