Spark调优

Spark调优

1.SparkCore调优

1.1数据序列化

Spark支持两种方式的序列化:

​ 1、Java原生序列化JavaSerializer

​ 2、Kryo序列KryoSerliazer

序列化对于Spark应用的性能来说,具有很大的影响。在特定的数据格式情况下,KryoSerializer的性能可以达到JavaSerializer的10倍以上,而对于一些Int之类的基本类型数据,性能的提升就几乎可以忽略。

KryoSerializer依赖Twitter的Chill库来实现,相对于JavaSerializer,主要的问题在于不是所有的Java Serializable对象都能支持,兼容性不好,所以需要手动注册类。

序列化功能用在两个地方:序列化任务和序列化数据。Spark任务序列化只支持JavaSerializer,数据序列化支持JavaSerializer和KryoSerializer。

操作步骤

Spark程序运行时,在shuffle和RDD Cache等过程中,会有大量的数据需要序列化,默认使用JavaSerializer,通过配置让KryoSerializer作为数据序列化器来提升序列化性能。

在开发应用程序时,添加如下代码来使用KryoSerializer作为数据序列化器。

  • 实现类注册器并手动注册类。

    package com.etl.common;
    
    import com.esotericsoftware.kryo.Kryo;
    import org.apache.spark.serializer.KryoRegistrator; 
    
    public class DemoRegistrator implements KryoRegistrator
    {
        @Override
        public void registerClasses(Kryo kryo)
        {
            //以下为示例类,请注册自定义的类
            kryo.register(AggrateKey.class);
            kryo.register(AggrateValue.class);
        }
    }
    

    您可以在Spark客户端对spark.kryo.registrationRequired参数进行配置,设置是否需要Kryo注册序列化。

    当参数设置为true时,如果工程中存在未被序列化的类,则会抛出异常。如果设置为false(默认值),Kryo会自动将未注册的类名写到对应的对象中。此操作会对系统性能造成影响。设置为true时,用户需手动注册类,针对未序列化的类,系统不会自动写入类名,而是抛出异常,相对比false,其性能较好。

  • 配置KryoSerializer作为数据序列化器和类注册器。

    val conf = new SparkConf()
    conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    .set("spark.kryo.registrator", "com.etl.common.DemoRegistrator")
    
1.2使用External Shuffle Service提升性能
操作场景

Spark系统在运行含shuffle过程的应用时,Executor进程除了运行task,还要负责写shuffle数据以及给其他Executor提供shuffle数据。当Executor进程任务过重,导致触发GC(Garbage Collection)而不能为其他Executor提供shuffle数据时,会影响任务运行。

External shuffle Service是长期存在于NodeManager进程中的一个辅助服务。通过该服务来抓取shuffle数据,减少了Executor的压力,在Executor GC的时候也不会影响其他Executor的任务运行。

操作步骤
spark.shuffle.service.enabledfalsetrue
1.3使用广播变量
操作场景

Broadcast(广播)可以把数据集合分发到每一个节点上,Spark任务在执行过程中要使用这个数据集合时,就会在本地查找Broadcast过来的数据集合。如果不使用Broadcast,每次任务需要数据集合时,都会把数据序列化到任务里面,不但耗时,还使任务变得很大。

  1. 每个任务分片在执行中都需要同一份数据集合时,就可以把公共数据集Broadcast到每个节点,让每个节点在本地都保存一份。
  2. nbgh大表和小表做join操作时可以把小表Broadcast到各个节点,从而就可以把join操作转变成普通的操作,减少了shuffle操作。
1.4设置并行度
操作场景

并行度控制任务的数量,影响shuffle操作后数据被切分成的块数。调整并行度让任务的数量和每个任务处理的数据与机器的处理能力达到最优。

查看CPU使用情况和内存占用情况,当任务和数据不是平均分布在各节点,而是集中在个别节点时,可以增大并行度使任务和数据更均匀的分布在各个节点。增加任务的并行度,充分利用集群机器的计算能力,一般并行度设置为集群CPU总和的2-3倍。

操作步骤

并行度可以通过如下三种方式来设置,用户可以根据实际的内存、CPU、数据以及应用程序逻辑的情况调整并行度参数。

  • 在会产生shuffle的操作函数内设置并行度参数,优先级最高。

    testRDD.groupByKey(24)
    
  • 在代码中配置

    “spark.default.parallelism”

    设置并行度,优先级次之。

    val conf = new SparkConf()
    conf.set("spark.default.parallelism", 24)
    
  • “$SPARK_HOME/conf/spark-defaults.conf”

    文件中配置

    “spark.default.parallelism”

    的值,优先级最低。

    spark.default.parallelism    24
    
1.5配置内存
操作场景

Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。

监控节点进程的GC情况(在客户端的conf/spark-default.conf配置文件中,在spark.driver.extraJavaOptions和spark.executor.extraJavaOptions配置项中添加参数:"-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps"

),如果频繁出现Full GC,需要优化GC。把RDD做Cache操作,通过日志查看RDD在内存中的大小,如果数据太大,需要改变RDD的存储级别来优化。

操作步骤
  • 优化GC,调整老年代和新生代的大小和比例。在客户端的conf/spark-default.conf配置文件中,在spark.driver.extraJavaOptions和spark.executor.extraJavaOptions配置项中添加参数:-XX:NewRatio。如," -XX:NewRatio=2",则新生代占整个堆空间的1/3,老年代占2/3。

  • 开发Spark应用程序时,优化RDD的数据结构。

    • 使用原始类型数组替代集合类,如可使用fastutil库。
    • 避免嵌套结构。
    • Key尽量不要使用String。
  • 开发Spark应用程序时,建议序列化RDD。

    RDD做cache时默认是不序列化数据的,可以通过设置存储级别来序列化RDD减小内存。例如:

    testRDD.persist(StorageLevel.MEMORY_ONLY_SER)
    
1.6 设计DAG
操作场景

合理的设计程序结构,可以优化执行效率。在程序编写过程中要尽量减少shuffle操作,合并窄依赖操作。

1.7经验总结
使用mapPartitions,按每个分区计算结果

如果每条记录的开销太大,例:

rdd.map{x=>conn=getDBConn;conn.write(x.toString);conn.close}

则可以使用MapPartitions,按每个分区计算结果,如

rdd.mapPartitions(records => conn.getDBConn;for(item <- records)
write(item.toString); conn.close)

使用mapPartitions可以更灵活地操作数据,例如对一个很大的数据求TopN,当N不是很大时,可以先使用mapPartitions对每个partition求TopN,collect结果到本地之后再做排序取TopN。这样相比直接对全量数据做排序取TopN效率要高很多。

使用coalesce调整分片的数量

coalesce可以调整分片的数量。coalesce函数有两个参数:

coalesce(numPartitions: Int, shuffle: Boolean = false)

当shuffle为true的时候,函数作用与repartition(numPartitions: Int)相同,会将数据通过Shuffle的方式重新分区;当shuffle为false的时候,则只是简单的将父RDD的多个partition合并到同一个task进行计算,shuffle为false时,如果numPartitions大于父RDD的切片数,那么分区不会重新调整。

遇到下列场景,可选择使用coalesce算子:

  • 当之前的操作有很多filter时,使用coalesce减少空运行的任务数量。此时使用coalesce(numPartitions, false),numPartitions小于父RDD切片数。
  • 当输入切片个数太大,导致程序无法正常运行时使用。
  • 当任务数过大时候Shuffle压力太大导致程序挂住不动,或者出现linux资源受限的问题。此时需要对数据重新进行分区,使用coalesce(numPartitions, true)。
localDir配置

Spark的Shuffle过程需要写本地磁盘,Shuffle是Spark性能的瓶颈,I/O是Shuffle的瓶颈。配置多个磁盘则可以并行的把数据写入磁盘。如果节点中挂载多个磁盘,则在每个磁盘配置一个Spark的localDir,这将有效分散Shuffle文件的存放,提高磁盘I/O的效率。如果只有一个磁盘,配置了多个目录,性能提升效果不明显。

Collect小数据

大数据量不适用collect操作。

collect操作会将Executor的数据发送到Driver端,因此使用collect前需要确保Driver端内存足够,以免Driver进程发生OutOfMemory异常。当不确定数据量大小时,可使用saveAsTextFile等操作把数据写入HDFS中。只有在能够大致确定数据大小且driver内存充足的时候,才能使用collect。

使用reduceByKey

reduceByKey会在Map端做本地聚合,使得Shuffle过程更加平缓,而groupByKey等Shuffle操作不会在Map端做聚合。因此能使用reduceByKey的地方尽量使用该算子,避免出现groupByKey().map(x=>(x._1,x._2.size))这类实现方式。

广播时map代替数组

当每条记录需要查表,如果是Driver端用广播方式传递的数据,数据结构优先采用set/map而不是Iterator,因为Set/Map的查询速率接近O(1),而Iterator是O(n)。

数据倾斜

当数据发生倾斜(某一部分数据量特别大),虽然没有GC(Gabage Collection,垃圾回收),但是task执行时间严重不一致。

  • 需要重新设计key,以更小粒度的key使得task大小合理化。
  • 修改并行度。
优化数据结构
  • 把数据按列存放,读取数据时就可以只扫描需要的列。
  • 使用Hash Shuffle时,通过设置spark.shuffle.consolidateFiles为true,来合并shuffle中间文件,减少shuffle文件的数量,减少文件IO操作以提升性能。最终文件数为reduce tasks数目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值