BZOJ 3626 LCA 树链剖分

题目链接:bzoj3626


题目大意:给出一个有根树,对于询问l,r,z,求出求在[l,r]区间内的每个节点i与z的最近公共祖先的深度之和


题解:

引用清华爷gconeice的题解

显然,暴力求解的复杂度是无法承受的。
考虑这样的一种暴力,我们把 z 到根上的点全部打标记,对于 l 到 r 之间的点,向上搜索到第一个有标记的点求出它的深度统计答案。观察到,深度其实就是上面有几个已标记了的点(包括自身)。所以,我们不妨把 z 到根的路径上的点全部 +1,对于 l 到 r 之间的点询问他们到根路径上的点权和。仔细观察上面的暴力不难发现,实际上这个操作具有叠加性,且可逆。也就是说我们可以对于 l 到 r 之间的点 i,将 i 到根的路径上的点全部 +1, 转而询问 z 到根的路径上的点(包括自身)的权值和就是这个询问的答案。把询问差分下,也就是用 [1, r] − [1, l − 1] 来计算答案,那么现在我们就有一个明显的解法。从 0 到 n − 1 依次插入点 i,即将 i 到根的路径上的点全部+1。离线询问答案即可。我们现在需要一个数据结构来维护路径加和路径求和,显然树链剖分或LCT 均可以完成这个任务。树链剖分的复杂度为 O((n + q)· log n · log n),LCT的复杂度为 O((n + q)· log n),均可以完成任务。至此,题目已经被我们完美解决。


/**************************************************************
    Problem: 3626
    User: cabinfever
    Language: C++
    Result: Accepted
    Time:1724 ms
    Memory:7188 kb
****************************************************************/
 
#include <cstdio>
#include <string>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <iostream>
 
using namespace std;
 
const int maxn = 50010;
 
struct edge
{
    int v,next;
}e[maxn];
int h[maxn],num = 0;
int fa[maxn];
int son[maxn];
int pos[maxn];
int top[maxn];
int size[maxn];
int n,m,cnt = 0;
struct tree
{
    long long  x,mark;
    int l,r;
}t[maxn << 1];
int tot = 0;
struct Query
{
    int x,z,num;
    long long ans;
}q[maxn << 1];
 
bool cmp1(Query a,Query b)
{
    return a.num < b.num;
}
 
bool cmp2(Query a,Query b)
{
    return a.x == b.x ? a.z < b.z : a.x < b.x;
}
 
void build_edge(int u,int v)
{
    num++;
    e[num].v = v;
    e[num].next = h[u];
    h[u] = num;
}
 
void build_tree(int x)
{
    size[x] = 1;
    son[x] = 0;
    for(int i = h[x]; i; i = e[i].next)
    {
        build_tree(e[i].v);
        if(size[e[i].v] > size[son[x]])
            son[x] = e[i].v;
        size[x] += size[e[i].v];
    }
}
 
void split(int x)
{
    if(son[fa[x]] == x)
        top[x] = top[fa[x]];
    else
    {
        top[x] = x;
        for(int i = x; i; i = son[i])
            pos[i] = ++cnt;
    }
    for(int i = h[x]; i; i = e[i].next)
        split(e[i].v);
}
 
void build(int p,int l,int r)
{
    int mid = l + r >> 1;
    if(l == r)
        return;
    t[p].l = ++tot;
    t[p].r = ++tot;
    build(t[p].l,l,mid);
    build(t[p].r,mid+1,r);
}
 
void change(int p,int l,int r,int L,int R)
{
    int mid = l + r >> 1;
    if(l == L && r == R)
    {
        t[p].x += r - l + 1;
        t[p].mark++;
        return;
    }
    if(t[p].mark)
    {
        t[t[p].l].x += (mid - l + 1) * t[p].mark;
        t[t[p].r].x += (r - mid) * t[p].mark;
        t[t[p].l].mark += t[p].mark;
        t[t[p].r].mark += t[p].mark;
        t[p].mark = 0;
    }
    if(R <= mid)
        change(t[p].l,l,mid,L,R);
    else if(L > mid)
        change(t[p].r,mid+1,r,L,R);
    else
    {
        change(t[p].l,l,mid,L,mid);
        change(t[p].r,mid+1,r,mid+1,R);
    }
    t[p].x = t[t[p].l].x + t[t[p].r].x;
}
 
long long getans(int p,int l,int r,int L,int R)
{
    int mid = l + r >> 1;
    if(l == L && r == R)
    {
        return t[p].x;
    }
    if(t[p].mark)
    {
        t[t[p].l].x += (mid - l + 1) * t[p].mark;
        t[t[p].r].x += (r - mid) * t[p].mark;
        t[t[p].l].mark += t[p].mark;
        t[t[p].r].mark += t[p].mark;
        t[p].mark = 0;
    }
    if(R <= mid)
        return getans(t[p].l,l,mid,L,R);
    else if(L > mid)
        return getans(t[p].r,mid+1,r,L,R);
    return getans(t[p].l,l,mid,L,mid) + getans(t[p].r,mid+1,r,mid+1,R);
}
 
void updata(int x)
{
    int fx = top[x];
    while(x)
    {
        change(0,1,n,pos[fx],pos[x]);
        x  = fa[fx];
        fx = top[x];
    }
}
 
long long query(int x)
{
    long long ans = 0;
    int fx = top[x];
    while(x)
    {
        ans += getans(0,1,n,pos[fx],pos[x]);
        x = fa[fx];
        fx = top[x];
    }
    return ans;
}
 
int main()
{
    cin >> n >> m;
    int x,y,z;
    for(int i = 2; i <= n; i++)
    {
        scanf("%d",&x);
        build_edge(x+1,i);
        fa[i] = x + 1;
    }
    build_tree(1);
    split(1);
    for(int i = 0; i < m; i++)
    {
        scanf("%d%d%d",&x,&y,&z);
        q[i*2].x = x;
        q[i*2].z = z+1;
        q[i*2].num = i*2;
        q[i*2+1].x = y+1;
        q[i*2+1].z = z+1;
        q[i*2+1].num = i*2+1;
    }
    sort(q,q+m*2,cmp2);
    build(0,1,n);
    int j = 0;
    for(int i = 0;i <= n; i++)
    {
        updata(i);
        while(q[j].x == i)
        {
            q[j].ans = query(q[j].z);
            j++;
        }
    }
    sort(q,q+m*2,cmp1);
    for(int i = 0; i < m; i++)
        printf("%lld\n",(q[i*2+1].ans - q[i*2].ans) % 201314);
    return 0;
}





题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值