有关博弈的问题

博弈是信息学和数学试题中常会出现的一种类型,算法灵活多变是其最大特点,而其中有一类试题更是完全无法用常见的博弈树来进行解答。寻找必败态即为针对此类试题给出一种解题思路。
    此类问题一般有如下特点:
    1、博弈模型为两人轮流决策的非合作博弈。即两人轮流进行决策,并且两人都使用最优策略来获取胜利。
    2、博弈是有限的。即无论两人怎样决策,都会在有限步后决出胜负。
    3、公平博弈。即两人进行决策所遵循的规则相同。

要理解这种思想,首先要明白什么叫必败态。说简单点,必败态就是“在对方使用最优策略时,无论做出什么决策都会导致失败的局面”。其他的局面称为胜态,值得注意的是在胜态下做出错误的决策也有可能导致失败。此类博弈问题的精髓就是让对手永远面对必败态。
    必败态和胜态有着如下性质:
    1、若面临末状态者为获胜则末状态为胜态否则末状态为必败态。
    2、一个局面是胜态的充要条件是该局面进行某种决策后会成为必败态。
    3、一个局面是必败态的充要条件是该局面无论进行何种决策均会成为胜态
    这三条性质正是博弈树的原理,但博弈树是通过计算每一个局面是胜态还是必败态来解题,这样在局面数很多的情况下是很难做到的,此时,我们可以利用人脑的推演归纳能力找到必败态的共性,就可以比较好的解决此类问题了。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值