经楼下朋友提醒,我这个算法求出的正好是21位水仙花数。于是我对其进行了稍微的修订,使得其支持任意位数的水仙花数求值,效果还不错,理论上的水仙花最大数为34位(我算了下,至少到39位还有解),我的求解花了半分多钟,而21位数的求解只化了2秒多。
[原题]
http://www.iteye.com/problems/50018
[解决思路]
这个我最初的思路也是想找出其中是否有数学规律,无奈大学数学就混过来的,只能穷举解决了。
虽然是穷举,但是不同的实现,效果也不一样,如果要从100000000000000000000穷举到999999999999999999999,我想肯定麻烦大了。
这里我主要是换个思路,穷举这个数中的每个位置上的数字的总数。从一开始,我们假设共有该数中存在9个9,我们将这个数的信息存到几个特定的数组中去:
private int[] countArray = new int[10]; // 个数列表
private int[] countSumArray = new int[10]; // 个数总数
private BigInteger[] sumArray = new BigInteger[10];// 值总数
private int offset = 0;// 浮标
countArray记录依次从9到0每个数的个数,countSumArray是countArray中的各个数与其之前所有数的个数的总和(即countSumArray[n]=countSumArray[n-1]+countNum),sumArray是当前数的总值(即sumArray[n]=sumArray[n-1]+num)。offset是浮标,即当前判定的数的位置
我们对该个数进行判断,9个9后面还有12位数,那么9个9最小就是9个9的平方+12个0的平方,最大是9个9的平方+12个8的平方。我们从以下三个方面来判断:
1. 最小值不大于999999999999999999999
2. 最大值不小于100000000000000000000
3. 最大值与最小值从首部是否相同的部分,如777700000000000000000与777799999999999999999,存在7777相同的部分,如果该相同的部分中有某个数的个数大于offset中相同的值的个数,那么该值也判定为失败
还有一个很重要的判断就是,如果countSumArray中对应的offset中的值为21,那么即所有的位数都有值,那么直接判定如果该值=其各个位置上的数的21次方之和,如果不等返回失败,反之,这个数就是要求的数。
总体判断如上所述,如果失败我们即查询下一个数next(),countSumArray[offset]=21,那么就是查到头了,就返回查找back()。
用到了几个技巧,就是将BigInteger的运算结果直接存储到hashtable中去,可以节约大量运算时间。题中给予了4分钟的时间,以为很需要一段时间,就设置了多线程,后来发现,不使用多线程也只要花费2秒种,多线程的意义也就不复存在了。
应楼下朋友要求,贴图描述解题思路,很少画图,更没用Dia画过图,有粗制滥造之嫌,请勿怪了。。。
[代码实现]
import java.math.BigInteger;
import java.util.Hashtable;
public class Main {
private static final int SIZE = 21;
private int[] countArray = new int[10]; // 个数列表
private int[] countSumArray = new int[10]; // 个数总数
private BigInteger[] sumArray = new BigInteger[10];// 值总数
private int offset = 0;// 浮标
/**
* 设置当前浮标对应的个数,个数的总数,值总数
*
* @param num
* 个数
*/
private void setValue(int num) {
countArray[offset] = num;
if (offset == 0) {
countSumArray[offset] = num;
sumArray[offset] = p(9 - offset).multiply(n(num));
} else {
countSumArray[offset] = countSumArray[offset - 1] + num;
sumArray[offset] = sumArray[offset - 1].add(p(9 - offset).multiply(n(num)));
}
}
/**
* 检验当前数据是否匹配
*
* @return
*/
private boolean checkPersentArray() {
BigInteger minVal = sumArray[offset];// 当前已存在值
BigInteger maxVal = sumArray[offset].add(p(9 - offset).multiply(n(SIZE - countSumArray[offset])));// 当前已存在值+可能存在的最大值
// 最小值匹配
if (minVal.compareTo(MAX) > 0) {
return false;
}
// 最大值匹配
if (maxVal.compareTo(MIN) < 0) {
return false;
}
String minStr = minVal.compareTo(MIN) > 0 ? minVal.toString() : MIN.toString();
String maxStr = maxVal.compareTo(MAX) < 0 ? maxVal.toString() : MAX.toString();
// 找到最小值与最大值间首部相同的部分
int[] sameCountArray = new int[10];
for (int i = 0; i < SIZE; i++) {
char c;
if ((c = minStr.charAt(i)) == maxStr.charAt(i)) {
sameCountArray[c - '0'] = sameCountArray[c - '0'] + 1;
} else {
break;
}
}
// 判断如果相同部分有数据大于现在已记录的位数,返回false
for (int i = 0; i <= offset; i++) {
if (countArray[i] < sameCountArray[9 - i]) {
return false;
}
}
// 如果当前值的总数为SIZE位,那么判断该值是不是需要查找的值
if (countSumArray[offset] == SIZE) {
String sumStr = sumArray[offset].toString();
BigInteger sum = ZERO;
for (int i = 0; i < sumStr.length(); i++) {
sum = sum.add(p(sumStr.charAt(i) - '0'));
}
return sum.compareTo(sumArray[offset]) == 0;
}
return true;
}
/**
* 退出循环,打印
*
* @return
*/
private void success() {
System.out.println("find a match number:" + sumArray[offset]);
}
/**
* 将浮标指向下一位数
*
* @return
*/
private void next() {
offset++;
setValue(SIZE - countSumArray[offset - 1]);
}
/**
*
* 回退浮标,找到最近的浮标,并减一
*
* @return
*/
private boolean back() {
// 回退浮标,找到最近的浮标,并减一
if (countArray[offset] == 0) {
while (countArray[offset] == 0) {
if (offset > 0) {
offset--;
} else {
return true;
}
}
}
if (offset > 0) {
setValue(countArray[offset] - 1);
return false;
} else {
return true;
}
}
/**
* 测试程序
*
* @param startValue
* 测试匹配数中包含9的个数
* @param startTime
* 程序启动时间
*/
private void test(int startValue, long startTime) {
// 设置9的个数
offset = 0;
setValue(startValue);
while (true) {
if (checkPersentArray()) {// 检查当前提交数据是否匹配
// 匹配且总数正好为SIZE的位数,那么就是求解的值
if (countSumArray[offset] == SIZE) {
success();
}
// 总数不为SIZE,且当前值不在第10位(即不等于0)
if (offset != 9) {
next();
continue;
}
// 总数不为SIZE,且当前值在第10位。
if (back()) {
break;
}
} else {
if (back()) {
break;
}
}
}
System.out.println(Thread.currentThread() + " End,Spend time " + (System.currentTimeMillis() - startTime) / 1000 + "s");
}
/**
* 主函数
*/
public static void main(String[] args) {
final long startTime = System.currentTimeMillis();
int s = MAX.divide(p(9)).intValue();
for (int i = 0; i <= s; i++) {
// new Main().test(i, startTime);
// 启动十个线程同时运算
final int startValue = i;
new Thread(new Runnable() {
public void run() {
new Main().test(startValue, startTime);
}
}).start();
}
}
private static final BigInteger ZERO = new BigInteger("0");
private static final BigInteger MIN;
private static final BigInteger MAX;
/**
* 0-SIZE间的BigInteger
*/
private static final BigInteger n(int i) {
return (BigInteger) ht.get("n_" + i);
}
/**
* 0-9的次方的BigInteger
*/
private static final BigInteger p(int i) {
return (BigInteger) ht.get("p_" + i);
}
/**
* 用于缓存BigInteger数据,并初始化0-SIZE间的BigInteger和0-9的次方的BigInteger
*/
private static Hashtable<String, Object> ht = new Hashtable<String, Object>();
static {
int s = SIZE < 10 ? 10 : SIZE;
for (int i = 0; i <= s; i++) {
ht.put("n_" + i, new BigInteger(String.valueOf(i)));
}
for (int i = 0; i <= 10; i++) {
ht.put("p_" + i, new BigInteger(String.valueOf(i)).pow(SIZE));
}
MIN = n(10).pow(SIZE - 1);
MAX = n(10).pow(SIZE).subtract(n(1));
}
}
[结论]
运算结果如下:
Thread[Thread-0,5,main] End,Spend time 0s Thread[Thread-9,5,main] End,Spend time 0s Thread[Thread-5,5,main] End,Spend time 0s Thread[Thread-8,5,main] End,Spend time 0s find a match number:449177399146038697307 Thread[Thread-4,5,main] End,Spend time 1s Thread[Thread-7,5,main] End,Spend time 1s Thread[Thread-6,5,main] End,Spend time 1s Thread[Thread-3,5,main] End,Spend time 2s find a match number:128468643043731391252 Thread[Thread-2,5,main] End,Spend time 3s Thread[Thread-1,5,main] End,Spend time 3s