二分查找习题篇(上)
1.二分查找
题目描述:
给定⼀个 n 个元素有序的(升序整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
提示:
你可以假设 nums 中的所有元素是不重复的。
n 将在 [1, 10000]之间。
nums 的每个元素都将在 [-9999, 9999]之间。
解法一:暴力解法
从前往后枚举每一个元素,将其与目标值进行对比。
时间复杂度最差为O(N)。
解法二:二分查找算法
当数组具有“二段性”时,我们就可以用二分查找算法。
算法思路:
定义 left , right 指针,分别指向数组的左右区间。
当left<=right时,下列一直循环:
找到待查找区间的中间点 mid ,找到之后分三种情况讨论:
- arr[mid] == target:返回 mid 的值;
- arr[mid] > target:让 right = mid - 1,在 [left, right] 的区间继续查找 ,重复 2 过程;
- arr[mid] < target:让 left = mid + 1, 在 [left, right] 的区间继续查找,重复 2 过程;
- 当left>right时,说明整个区间都没有这个数,返回 -1 。
细节问题:
1.循环结束的条件
当left>right
2.为什么是正确的?
二分查找是从暴力解法优化而来的
3.时间复杂度
1次——>n/21=n/2
2次——>n/22=n/4
3次——>n/23=n/8
…次——>…
x次——>n/2x=1(当left==right,找到要找的元素时)
2x=n——>x=logN
因此,二分查找的时间复杂度是logN.
代码实现:
class Solution {
public:
int search(vector<int>& nums, int target)
{
int left=0,right=nums.size()-1;
while(left<=right)//每次查找的元素都是未知的,所以要取等号
{
int mid=left+(right-left)/2; //防止溢出
if(nums[mid]>target) right=mid-1;
else if(nums[mid]<target) left=mid+1;
else return mid;
}
return -1;
}
};
朴素二分模版:
while(left<=right)//每次查找的元素都是未知的,所以要取等号
{
int mid=left+(right-left)