2017山东省赛D题(SDUT3896逆元法求组合数)

从大佬这学到了,这个大佬好厉害
题意:给你一个菱形的棋盘,然后从1 1出发,到给定的点,可以走右下,左下,和下三条路。问到给定的点有多少条路;
大致写出一些样例就可以发现这是一个类似杨辉三角的东西,然后很容易发现每一个点都是左上右上的和。但是感觉没什么用处。。。
可以把菱形逆时针旋转45°,然后就成了一个矩形。然后问题就可以转化为从给定的点到1 1点有多少种方法。
以矩形的方式来说,知道这个点的坐标,就可以推出这个点只通过向左和向上的路径的个数为(矩形长+宽)!/(矩形长!*矩形宽!)。
然后再来考虑斜着走的情况。假设斜着走1次,走一个斜的长和宽就全部减一,,然后进行全排列(矩形长+宽+斜着走次数)!/(矩形长!矩形宽!斜!),然后斜着走的次数逐渐增加直到长和宽有一个为0。
然后就是全排列的求解了,需要用乘法逆元,我本来用的是费马小定理求解乘法逆元,但是超时了(应该是预处理的问题),于是改用了线性求解。
代码用线性方法求逆元,费马定理也可以,不过都需要预处理,不然都会超时
详解看这里
code:
线性方法

#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
const int maxn=101010;
const ll mod=1000000007;
ll jiec[maxn];
ll invi[maxn];
ll inv(ll a)
{
    if(a<=1)
        return 1;
    return inv(mod%a)*(mod-mod/a)%mod;
}

int main()
{

    jiec[0]=1;
    invi[0]=1;
    invi[1]=1;
    for(int i=1;i<maxn;i++)
    {
        jiec[i]=jiec[i-1]*i%mod;
        invi[i]=inv(jiec[i]);
    }
    ll x,y;
    while(cin>>x>>y)
    {
        ll l,r,c;
        l=y-1;
        r=x-y;
        c=0;
        ll res=0;
        while(r>=0&&l>=0)
        {
            ll temp=((jiec[l+r+c]*invi[l]%mod)*invi[r])%mod*invi[c];
            temp%=mod;
            res=(res+temp)%mod;
            l--;
            r--;
            c++;
        }
        cout<<res<<endl;
    }
    return 0;
}

费马小定理

#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
const int maxn=101010;
const ll mod=1000000007;
ll jiec[maxn];
ll invi[maxn];
ll kuaisumi(ll a,ll b)  
{  
    ll ans=1;  
    while(b)  
    {  
        if(b&1)  
        {  
            b--;  
            ans=(ans*a)%mod;  
        }  
        b=b>>1;  
        a=(a*a)%mod;  
    }  
    ans=ans%mod;  
    return ans;  
} 
ll inv(ll a)
{
    if(a<=1)
        return 1;
    return kuaisumi(a,mod-2);
}

int main()
{

    jiec[0]=1;
    invi[0]=1;
    invi[1]=1;
    for(int i=1;i<maxn;i++)
    {
        jiec[i]=jiec[i-1]*i%mod;
        invi[i]=inv(jiec[i]);
    }
    ll x,y;
    while(cin>>x>>y)
    {
        ll l,r,c;
        l=y-1;
        r=x-y;
        c=0;
        ll res=0;
        while(r>=0&&l>=0)
        {
            ll temp=((jiec[l+r+c]*invi[l]%mod)*invi[r])%mod*invi[c];
            temp%=mod;
            res=(res+temp)%mod;
            l--;
            r--;
            c++;
        }
        cout<<res<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值