从大佬这学到了,这个大佬好厉害
题意:给你一个菱形的棋盘,然后从1 1出发,到给定的点,可以走右下,左下,和下三条路。问到给定的点有多少条路;
大致写出一些样例就可以发现这是一个类似杨辉三角的东西,然后很容易发现每一个点都是左上右上的和。但是感觉没什么用处。。。
可以把菱形逆时针旋转45°,然后就成了一个矩形。然后问题就可以转化为从给定的点到1 1点有多少种方法。
以矩形的方式来说,知道这个点的坐标,就可以推出这个点只通过向左和向上的路径的个数为(矩形长+宽)!/(矩形长!*矩形宽!)。
然后再来考虑斜着走的情况。假设斜着走1次,走一个斜的长和宽就全部减一,,然后进行全排列(矩形长+宽+斜着走次数)!/(矩形长!矩形宽!斜!),然后斜着走的次数逐渐增加直到长和宽有一个为0。
然后就是全排列的求解了,需要用乘法逆元,我本来用的是费马小定理求解乘法逆元,但是超时了(应该是预处理的问题),于是改用了线性求解。
代码用线性方法求逆元,费马定理也可以,不过都需要预处理,不然都会超时
详解看这里
code:
线性方法
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
const int maxn=101010;
const ll mod=1000000007;
ll jiec[maxn];
ll invi[maxn];
ll inv(ll a)
{
if(a<=1)
return 1;
return inv(mod%a)*(mod-mod/a)%mod;
}
int main()
{
jiec[0]=1;
invi[0]=1;
invi[1]=1;
for(int i=1;i<maxn;i++)
{
jiec[i]=jiec[i-1]*i%mod;
invi[i]=inv(jiec[i]);
}
ll x,y;
while(cin>>x>>y)
{
ll l,r,c;
l=y-1;
r=x-y;
c=0;
ll res=0;
while(r>=0&&l>=0)
{
ll temp=((jiec[l+r+c]*invi[l]%mod)*invi[r])%mod*invi[c];
temp%=mod;
res=(res+temp)%mod;
l--;
r--;
c++;
}
cout<<res<<endl;
}
return 0;
}
费马小定理
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
const int maxn=101010;
const ll mod=1000000007;
ll jiec[maxn];
ll invi[maxn];
ll kuaisumi(ll a,ll b)
{
ll ans=1;
while(b)
{
if(b&1)
{
b--;
ans=(ans*a)%mod;
}
b=b>>1;
a=(a*a)%mod;
}
ans=ans%mod;
return ans;
}
ll inv(ll a)
{
if(a<=1)
return 1;
return kuaisumi(a,mod-2);
}
int main()
{
jiec[0]=1;
invi[0]=1;
invi[1]=1;
for(int i=1;i<maxn;i++)
{
jiec[i]=jiec[i-1]*i%mod;
invi[i]=inv(jiec[i]);
}
ll x,y;
while(cin>>x>>y)
{
ll l,r,c;
l=y-1;
r=x-y;
c=0;
ll res=0;
while(r>=0&&l>=0)
{
ll temp=((jiec[l+r+c]*invi[l]%mod)*invi[r])%mod*invi[c];
temp%=mod;
res=(res+temp)%mod;
l--;
r--;
c++;
}
cout<<res<<endl;
}
return 0;
}