比赛的时候有想到一次找所有数的一个共同因数,结果没有考虑素数的情况,想歪了,成了莫比乌斯反演。。。。。
素数定理:任意一个数都可以表示为
n=pa11pa22…pakk
,n的所有因子个数为
(a1+1)(a2+1)…(ak+1)
,然后对与每个在范围内的质数,都进行一次遍历,看是不是l-r中某些数的因子。
明白了同时对一个质数都询问是否是l~r中每个数的质数,大大提高了效率。明明能想到,却还是差那么一点,就是题刷的太少。。
code:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<string>
#include <set>
using namespace std;
#define ll long long
#define mem(a) memset(a,0,sizeof(a))
const int eps=1e-8;
const int maxn=1000010;//须填写
const int inf=0x3f3f3f3f;
const ll mod=998244353;
ll j,i;
ll l,r,k;
ll p[maxn];
int vis[maxn];
ll sum[maxn];
ll num[maxn];//因为区间大小最大为10^6所以maxn就够了,不过输入的时候要处理
void work(int snum)
{
for(ll ii=l/snum*snum;ii<=r;ii+=snum)//所有snum的倍数都遍历
{
if(ii>=l)
{
ll res=0;
while(num[ii-l]%snum==0)//snum的倍数里是snum的几次幂,求出来放在res里
{
num[ii-l]/=snum;
res++;
}
sum[ii-l]=sum[ii-l]*(res*k+1)%mod;
sum[ii-l]%=mod;
}
}
}
int main()
{
//预处理素数,将素数放入p中,p[i]代表第i个素数
int t=0;
p[0]=1;
for(i=2;i<maxn-10;i++)//筛到根号r(10^6)就够了
{
if(!vis[i])
p[++t]=i;
for(j=1;i*p[j]<maxn-10&&j<=t;j++)
{
vis[i*p[j]]=1;
if(i%p[j]==0)
break;
}
}
int kase;
scanf("%d",&kase);
while(kase--)
{
cin>>l>>r>>k;
for(i=0;i<=r-l;i++)
{
num[i]=l+i;
sum[i]=1;
}//这里如果直接从l开始,数组会存不开
for(i=1;i<t;i++)
{
if(p[i]*p[i]>r)
break;
work(p[i]);
//cout<<p[i]<<endl;
}
ll res=0;
for(i=0;i<=r-l;i++)
{
//cout<<sum[i]<<endl;
if(num[i]>1) //这里把大于r^0.5的素数加上
{
sum[i]=sum[i]*(k+1);
}
//cout<<sum[i]<<endl;
res+=sum[i]%mod;
res%=mod;
}
res%=mod;
cout<<res<<endl;
}
return 0;
}