HDU6069(思维+素数定理)

37 篇文章 0 订阅
4 篇文章 0 订阅

比赛的时候有想到一次找所有数的一个共同因数,结果没有考虑素数的情况,想歪了,成了莫比乌斯反演。。。。。
素数定理:任意一个数都可以表示为 n=pa11pa22pakk ,n的所有因子个数为 (a1+1)(a2+1)(ak+1) ,然后对与每个在范围内的质数,都进行一次遍历,看是不是l-r中某些数的因子。
明白了同时对一个质数都询问是否是l~r中每个数的质数,大大提高了效率。明明能想到,却还是差那么一点,就是题刷的太少。。
code:

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<string>
#include <set>
using namespace std;
#define ll long long
#define mem(a) memset(a,0,sizeof(a))
const int eps=1e-8;
const int maxn=1000010;//须填写
const int inf=0x3f3f3f3f;
const ll mod=998244353;
ll j,i;
ll l,r,k;
ll p[maxn];
int vis[maxn];
ll sum[maxn];
ll num[maxn];//因为区间大小最大为10^6所以maxn就够了,不过输入的时候要处理
void work(int snum)
{
    for(ll ii=l/snum*snum;ii<=r;ii+=snum)//所有snum的倍数都遍历
    {

        if(ii>=l)
        {
            ll res=0;
            while(num[ii-l]%snum==0)//snum的倍数里是snum的几次幂,求出来放在res里
            {
                num[ii-l]/=snum;
                res++;
            }
            sum[ii-l]=sum[ii-l]*(res*k+1)%mod;
            sum[ii-l]%=mod;
        }
    }
}
int main()
{

    //预处理素数,将素数放入p中,p[i]代表第i个素数
    int t=0;
    p[0]=1;
    for(i=2;i<maxn-10;i++)//筛到根号r(10^6)就够了
    {
        if(!vis[i])
            p[++t]=i;
        for(j=1;i*p[j]<maxn-10&&j<=t;j++)
        {
            vis[i*p[j]]=1;
            if(i%p[j]==0)
                break;
        }
    }

    int kase;
    scanf("%d",&kase);
    while(kase--)
    {

        cin>>l>>r>>k;
        for(i=0;i<=r-l;i++)
        {
            num[i]=l+i;
            sum[i]=1;
        }//这里如果直接从l开始,数组会存不开
        for(i=1;i<t;i++)
        {
            if(p[i]*p[i]>r)
                break;
            work(p[i]);
            //cout<<p[i]<<endl;
        }
        ll res=0;

        for(i=0;i<=r-l;i++)
        {
            //cout<<sum[i]<<endl;
            if(num[i]>1)  //这里把大于r^0.5的素数加上
            {
                sum[i]=sum[i]*(k+1);
            }
            //cout<<sum[i]<<endl;
            res+=sum[i]%mod;
            res%=mod;
        }
        res%=mod;
        cout<<res<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值