python 层次聚类

import plotly
from scipy.cluster.hierarchy import dendrogram, linkage, cut_tree
z = linkage(data, method='single', metric='correlation') # method:变量聚类法  # metric:度量相关性的方法
# plt.figure(figsize=(20,5), dpi=300) 
dendrogram(z, labels=data.index)  # 聚类树状图
# # sns.clustermap(z,method ='ward',metric='euclidean') # 热力图
# label = cut_tree(z,height=3)   # 设置聚类的距离值,查看聚类结果label
# label = label.reshape(label.size,)
# label  # [0, 1, 0, 0, 0, 1, 1, 0] :值为0的索引为一类,值为1的索引为一类,共分为两类
plt.xticks(rotation=70)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值