import plotly
from scipy.cluster.hierarchy import dendrogram, linkage, cut_tree
z = linkage(data, method='single', metric='correlation') # method:变量聚类法 # metric:度量相关性的方法
# plt.figure(figsize=(20,5), dpi=300)
dendrogram(z, labels=data.index) # 聚类树状图
# # sns.clustermap(z,method ='ward',metric='euclidean') # 热力图
# label = cut_tree(z,height=3) # 设置聚类的距离值,查看聚类结果label
# label = label.reshape(label.size,)
# label # [0, 1, 0, 0, 0, 1, 1, 0] :值为0的索引为一类,值为1的索引为一类,共分为两类
plt.xticks(rotation=70)
python 层次聚类
最新推荐文章于 2024-08-18 11:24:59 发布