xgboost 为什么拟合残差能获得更好的效果(思考)

以时序预测为例:
在这里插入图片描述现在要
预测2022年之后的值,可以预测下降幅度(和预测残差的步骤一样)。

  • 假设有一个隐藏的规律:对于21年的高峰,22年的下降幅度会更大(如time=3是,下降幅度会比其他的大)。
  • 假设是否高峰和节日规律无关,那么我们不能通过节日来预测。

按常规的简单方法预测一下,会出现高峰期下降幅度过小的问题(预测值高于实际值),那么再做残差拟合时会得出这么一个规律:如果是高峰,那么残差越大。

总结:xgboost思想可以找出一个非线性能表达的规律。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值