- 博客(3)
- 收藏
- 关注
原创 PCA数学原理与简单人脸识别
PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。
2016-10-25 14:07:34 2128
原创 特征离散化系列(一)方法综述
对现存的离散化方法进行概述总结,对现有离散化方法进行归类的层次化结构描述(hierarchical framework),为进一步发展铺路(pave the way),对典型的离散化方法(representative discretization methods)的简要讨论,大量的试验和分析,在不同的应用环境下选择离散化方法的原则.
2016-10-07 18:56:27 14404 2
原创 机器学习参考(一)-那些国内外的大牛们
本文是个人的开篇博客,也是为整个博客确定其内容方向。博客以“机器学习参考-那些国内外的大牛们”开篇,旨在突出博客所有关注内容中的重点内容-机器学习。作为机器学习中的newcomer,在不到两年的学习实践道路上,也曾为如何快速入门绞尽了脑汁,故将自己在学习过程中的一点总结分享给各位同行们,望能达到与大家交流共成长的目的。
2016-09-24 17:59:28 3936
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人