题目描述:
二叉树的前序、中序、后序遍历的定义:
前序遍历:对任一子树,先访问跟,然后遍历其左子树,最后遍历其右子树;
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树;
后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
给定一棵二叉树的前序遍历和中序遍历,求其后序遍历(提示:给定前序遍历与中序遍历能够唯一确定后序遍历)。
输入:
两个字符串,其长度n均小于等于26。
第一行为前序遍历,第二行为中序遍历。
二叉树中的结点名称以大写字母表示:A,B,C....最多26个结点。
输出:
输入样例可能有多组,对于每组测试样例,
输出一行,为后序遍历的字符串。
样例输入:
ABC
BAC
FDXEAG
XDEFAG
样例输出:
BCA
XEDGAF
#include<stdio.h>
#include<string.h>
struct Node{
char content;
Node *lchild;
Node *rchild;
}Tree[26];
char str1[26];
char str2[26];
int loc;//节点个数
Node *creat(){
Tree[loc].lchild=Tree[loc].rchild=NULL;
return &Tree[loc++];
}
void postOrder(Node *root){
if(root->lchild!=NULL){
postOrder(root->lchild);
}
if(root->rchild!=NULL){
postOrder(root->rchild);
}
printf("%c",root->content);
}
Node *build(int s1,int e1,int s2,int e2){
Node* res=creat();
res->content=str1[s1];
int middle;
//找出前序首位在中序中的位置
for(int i=s2;i<=e2;i++){
if(str2[i]==str1[s1]){
middle=i;
break;
}
}
//存在左儿子
if(middle!=s2){
res->lchild=build(s1+1, s1+middle-s2,s2, middle-1);
}
//存在右儿子
if(middle!=e2){
res->rchild=build(s1+middle-s2+1,e1,middle+1,e2);
}
return res;
}
int main(){
while(scanf("%s",str1)!=EOF){
loc=0;
scanf("%s",str2);
int length=strlen(str1);
Node *root=build(0,length-1,0,length-1);
postOrder(root);
printf("\n");
}
return 0;
二叉树的前序、中序、后序遍历的定义:
前序遍历:对任一子树,先访问跟,然后遍历其左子树,最后遍历其右子树;
中序遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树;
后序遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。
给定一棵二叉树的前序遍历和中序遍历,求其后序遍历(提示:给定前序遍历与中序遍历能够唯一确定后序遍历)。
输入:
两个字符串,其长度n均小于等于26。
第一行为前序遍历,第二行为中序遍历。
二叉树中的结点名称以大写字母表示:A,B,C....最多26个结点。
输出:
输入样例可能有多组,对于每组测试样例,
输出一行,为后序遍历的字符串。
样例输入:
ABC
BAC
FDXEAG
XDEFAG
样例输出:
BCA
XEDGAF
#include<stdio.h>
#include<string.h>
struct Node{
char content;
Node *lchild;
Node *rchild;
}Tree[26];
char str1[26];
char str2[26];
int loc;//节点个数
Node *creat(){
Tree[loc].lchild=Tree[loc].rchild=NULL;
return &Tree[loc++];
}
void postOrder(Node *root){
if(root->lchild!=NULL){
postOrder(root->lchild);
}
if(root->rchild!=NULL){
postOrder(root->rchild);
}
printf("%c",root->content);
}
Node *build(int s1,int e1,int s2,int e2){
Node* res=creat();
res->content=str1[s1];
int middle;
//找出前序首位在中序中的位置
for(int i=s2;i<=e2;i++){
if(str2[i]==str1[s1]){
middle=i;
break;
}
}
//存在左儿子
if(middle!=s2){
res->lchild=build(s1+1, s1+middle-s2,s2, middle-1);
}
//存在右儿子
if(middle!=e2){
res->rchild=build(s1+middle-s2+1,e1,middle+1,e2);
}
return res;
}
int main(){
while(scanf("%s",str1)!=EOF){
loc=0;
scanf("%s",str2);
int length=strlen(str1);
Node *root=build(0,length-1,0,length-1);
postOrder(root);
printf("\n");
}
return 0;
}
注意:creat和build方法都是返回地址