文章目录
前言
回溯理论基础
回溯可以用于解决一些经典的问题,可以看到理论框架,
回溯的框架
77、组合问题
思路
回溯算法引入:C5-2这样的组合问题可以用两层for循环来实现,C5-3就是再套一层for循环,如果是C100-50呢?50层for循环。所以需要使用回溯算法;
- 核心在于:递归几次就是for循环几次
- 回溯算法就是使得这样的递归可以得到想要的结果:💖💜即,for给每一个元素遍历的时候,每一个元素都是需要递归的,所以进入了第一个元素之后出来需要回溯,pop掉第一个元素,然后再进入第二个元素; 所以回溯是紧跟在递归的后面,也是只在单层逻辑里面
按照老师的解题思路
首先看一下构建的树形结构
每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。
图中可以发现n相当于树的宽度,k相当于树的深度。
那么如何在这个树上遍历,然后收集到我们要的结果集呢?
图中每次搜索到了叶子节点,我们就找到了一个结果。
相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。
???有毒吧突然卡了写不了
回溯三部曲【看教程】
传入传出:定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。传入startIndex来记录下一层递归,搜索的起始位置。
终止条件:path记录的长度等于k了
其中单层逻辑:
for循环每次从startIndex开始遍历,然后用path保存取到的节点i。
方法一 没有剪枝
下面是我自己写的代码
💦💘同样的错误:结果传入的时候必须是浅复制之后的self.result.append(self.path[:]),而不是self.result.append(self.path),因为python是指向变量空间,self.path最后为空,这会导致结果为空
class Solution(object):
def __init__(self):
self.path = []
self.result = []
def backtrack(self,n,k,startindex):
#终止条件
if len(self.path) == k:
self.result.append(self.path[:])#必须要是复制切片
return
#单层递归逻辑,也就是处理一个节点
for i in range(startindex,n+1):
print(i)
self.path.append(i)
print(self.path)
self.backtrack(n,k,i+1)
self.path.pop()
return
def combine(self, n, k):
"""
:type n: int
:type k: int
:rtype: List[List[int]]
"""
self.backtrack(n,k,1)
return self.result
方法二 剪枝
老师讲解了一个非常常见的剪枝思路:单层逻辑中修改for遍历的范围
具体思路:如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。
具体实现:
注意:range是不包括右边界的,所以需要再+1
class Solution(object):
def __init__(self):
self.path = []
self.result = []
def backtrack(self,n,k,startindex):
#终止条件
if len(self.path) == k:
self.result.append(self.path[:])#必须要是复制切片
return
#单层递归逻辑,也就是处理一个节点
for i in range(startindex,n-(k-len(self.path))+2):
print(i)
self.path.append(i)
print(self.path)
self.backtrack(n,k,i+1)
self.path.pop()
return
def combine(self, n, k):
"""
:type n: int
:type k: int
:rtype: List[List[int]]
"""
self.backtrack(n,k,1)
return self.result
216.组合总和III
思路
方法一 没有剪枝
这是没听讲解直接写的,确实有了前面的基础就很简答了。
class Solution(object):
def __init__(self):
self.result = []
self.path = []
self.count = 0
def backtrace(self,target,k,startindex):
if len(self.path) == k:
if self.count == target:
self.result.append(self.path[:])
return
for i in range(startindex,10):
self.path.append(i)
self.count += i
self.backtrace(target,k,i+1)
self.count -= i
self.path.pop()
def combinationSum3(self, k, n):
"""
:type k: int
:type n: int
:rtype: List[List[int]]
"""
self.backtrace(n,k,1)
return self.result
方法二 有剪枝
当然,剪枝的思路有两个
- size角度:和之前一样,就是改变for循环语句
for i in range(startindex,10-(k-len(self.path))+1): - count的角度,如果当前的sum已经大于目标sum了,就返回。
class Solution:
def combinationSum3(self, k: int, n: int) -> List[List[int]]:
result = [] # 存放结果集
self.backtracking(n, k, 0, 1, [], result)
return result
def backtracking(self, targetSum, k, currentSum, startIndex, path, result):
if currentSum > targetSum: # 剪枝操作
return # 如果path的长度等于k但currentSum不等于targetSum,则直接返回
if len(path) == k:
if currentSum == targetSum:
result.append(path[:])
return
for i in range(startIndex, 9 - (k - len(path)) + 2): # 剪枝
currentSum += i # 处理
path.append(i) # 处理
self.backtracking(targetSum, k, currentSum, i + 1, path, result) # 注意i+1调整startIndex
currentSum -= i # 回溯
path.pop() # 回溯
17.电话号码的字母组合
思路
本题思路依然和之前的差不多;不多要注意细节的传入参数,我自己就没有想出来
回溯三部曲
- 传入传出参数:传入的应该是digits和指向digits的index(表示是digits中第几个数);
- 终止条件:如果index大于digit-size,说明到头了
- 单层递归逻辑:首先要取index指向的数字,并找到对应的字符集(手机键盘的字符集)。
💛本题注意点和小细节
- 💘使用map来表征数字和对应的字母;但是进一步可以用list来创建哈希表,其下标就是数字,元素值就是数字对应的字母(所以0和1是空的)
- digits[index]得到的结果是“2”这样的,要记得转换为数字类型;在c++中处理的方法是int digit = digits[index] - ‘0’
- 对于string类型的处理:python是string类型直接+就行,string类型删除的话使用[:-1]的方式;下面方法一3使用的是列表最后转为字符串,result.append(‘’.join(path))
方法一
下面是我自己写 的
class Solution(object):
def __init__(self):
self.map_ = [
" ",#0
" ",#1
"abc",#2
"def",#3
"ghi",#4
"jkl",#5
"mno",#6
"pqrs",#7
"tuv",#8
"wxyz",#9
]
self.result = []
self.s = ""
def backtrace(self,digits,index_):
if index_ == len(digits):
self.result.append(self.s)
return
for i in self.map_[int(digits[index_])]:
self.s += i
self.backtrace(digits,index_+1)
self.s = self.s[:-1]
def letterCombinations(self, digits):
"""
:type digits: str
:rtype: List[str]
"""
if len(digits) == 0:
return self.result
self.backtrace(digits,0)
return self.result
方法一2 隐藏回溯
具体方法:self.s不再设为全局变量,而是变成参数每次传进去;
回溯的是时候变成self.backtrace(digits,index_+1,s+letter);这样s就是没有变过的;
class Solution:
def __init__(self):
self.letterMap = [
"", # 0
"", # 1
"abc", # 2
"def", # 3
"ghi", # 4
"jkl", # 5
"mno", # 6
"pqrs", # 7
"tuv", # 8
"wxyz" # 9
]
self.result = []
def getCombinations(self, digits, index, s):
if index == len(digits):
self.result.append(s)
return
digit = int(digits[index])
letters = self.letterMap[digit]
for letter in letters:
self.getCombinations(digits, index + 1, s + letter)
def letterCombinations(self, digits):
if len(digits) == 0:
return self.result
self.getCombinations(digits, 0, "")
return self.result
方法一3 不用字符串而是列表来处理
def getCombinations(self, digits, index, path, result):
if index == len(digits):
result.append(''.join(path))
return
digit = int(digits[index])
letters = self.letterMap[digit]
for letter in letters:
path.append(letter)
self.getCombinations(digits, index + 1, path, result)
path.pop()
def letterCombinations(self, digits):
result = []
if len(digits) == 0:
return result
self.getCombinations(digits, 0, [], result)
return result