代码随想录算法训练营第24、25天|回溯理论基础、组合问题、216.组合总和III 17.电话号码的字母组合


前言

回溯理论基础

回溯可以用于解决一些经典的问题,可以看到理论框架
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
回溯的框架
在这里插入图片描述

77、组合问题

在这里插入图片描述

思路

回溯算法引入:C5-2这样的组合问题可以用两层for循环来实现,C5-3就是再套一层for循环,如果是C100-50呢?50层for循环。所以需要使用回溯算法;

  • 核心在于:递归几次就是for循环几次
  • 回溯算法就是使得这样的递归可以得到想要的结果:💖💜即,for给每一个元素遍历的时候,每一个元素都是需要递归的,所以进入了第一个元素之后出来需要回溯,pop掉第一个元素,然后再进入第二个元素; 所以回溯是紧跟在递归的后面,也是只在单层逻辑里面

按照老师的解题思路
首先看一下构建的树形结构
在这里插入图片描述
每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。
图中可以发现n相当于树的宽度,k相当于树的深度。

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。
???有毒吧突然卡了写不了
回溯三部曲【看教程】
传入传出:定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。传入startIndex来记录下一层递归,搜索的起始位置。

终止条件:path记录的长度等于k了

其中单层逻辑:
for循环每次从startIndex开始遍历,然后用path保存取到的节点i。
在这里插入图片描述

方法一 没有剪枝

下面是我自己写的代码
💦💘同样的错误:结果传入的时候必须是浅复制之后的self.result.append(self.path[:]),而不是self.result.append(self.path),因为python是指向变量空间,self.path最后为空,这会导致结果为空

class Solution(object):
    def __init__(self):
        self.path = []
        self.result = []
    def backtrack(self,n,k,startindex):
        #终止条件
        if len(self.path) == k:
            self.result.append(self.path[:])#必须要是复制切片
            return
        #单层递归逻辑,也就是处理一个节点
        for i  in range(startindex,n+1):
            print(i)
            self.path.append(i)
            print(self.path)
            self.backtrack(n,k,i+1)
            self.path.pop()
        return 
            

    def combine(self, n, k):
        """
        :type n: int
        :type k: int
        :rtype: List[List[int]]
        """
        self.backtrack(n,k,1)
        return self.result

方法二 剪枝

老师讲解了一个非常常见的剪枝思路:单层逻辑中修改for遍历的范围在这里插入图片描述
具体思路:如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了
具体实现:
在这里插入图片描述
注意:range是不包括右边界的,所以需要再+1

class Solution(object):
    def __init__(self):
        self.path = []
        self.result = []
    def backtrack(self,n,k,startindex):
        #终止条件
        if len(self.path) == k:
            self.result.append(self.path[:])#必须要是复制切片
            return
        #单层递归逻辑,也就是处理一个节点
        for i  in range(startindex,n-(k-len(self.path))+2):
            print(i)
            self.path.append(i)
            print(self.path)
            self.backtrack(n,k,i+1)
            self.path.pop()
        return 
            

    def combine(self, n, k):
        """
        :type n: int
        :type k: int
        :rtype: List[List[int]]
        """
        self.backtrack(n,k,1)
        return self.result

216.组合总和III

在这里插入图片描述

思路

方法一 没有剪枝

这是没听讲解直接写的,确实有了前面的基础就很简答了。

class Solution(object):
    def __init__(self):
        self.result = []
        self.path = []
        self.count = 0
    def backtrace(self,target,k,startindex):
        if len(self.path) == k:
            if self.count == target:
                self.result.append(self.path[:])
            return
        for i in range(startindex,10):
            self.path.append(i)
            self.count += i
            self.backtrace(target,k,i+1)
            self.count -= i
            self.path.pop()
    def combinationSum3(self, k, n):
        """
        :type k: int
        :type n: int
        :rtype: List[List[int]]
        """
        self.backtrace(n,k,1)
        return self.result

方法二 有剪枝

当然,剪枝的思路有两个

  1. size角度:和之前一样,就是改变for循环语句
    for i in range(startindex,10-(k-len(self.path))+1):
  2. count的角度,如果当前的sum已经大于目标sum了,就返回。
class Solution:
    def combinationSum3(self, k: int, n: int) -> List[List[int]]:
        result = []  # 存放结果集
        self.backtracking(n, k, 0, 1, [], result)
        return result

    def backtracking(self, targetSum, k, currentSum, startIndex, path, result):
        if currentSum > targetSum:  # 剪枝操作
            return  # 如果path的长度等于k但currentSum不等于targetSum,则直接返回
        if len(path) == k:
            if currentSum == targetSum:
                result.append(path[:])
            return
        for i in range(startIndex, 9 - (k - len(path)) + 2):  # 剪枝
            currentSum += i  # 处理
            path.append(i)  # 处理
            self.backtracking(targetSum, k, currentSum, i + 1, path, result)  # 注意i+1调整startIndex
            currentSum -= i  # 回溯
            path.pop()  # 回溯

17.电话号码的字母组合

在这里插入图片描述

思路

本题思路依然和之前的差不多;不多要注意细节的传入参数,我自己就没有想出来
回溯三部曲

  1. 传入传出参数:传入的应该是digits和指向digits的index(表示是digits中第几个数)
  2. 终止条件:如果index大于digit-size,说明到头了
  3. 单层递归逻辑:首先要取index指向的数字,并找到对应的字符集(手机键盘的字符集)。

💛本题注意点和小细节

  • 💘使用map来表征数字和对应的字母;但是进一步可以用list来创建哈希表,其下标就是数字,元素值就是数字对应的字母(所以0和1是空的)
  • digits[index]得到的结果是“2”这样的,要记得转换为数字类型;在c++中处理的方法是int digit = digits[index] - ‘0’
  • 对于string类型的处理:python是string类型直接+就行,string类型删除的话使用[:-1]的方式;下面方法一3使用的是列表最后转为字符串,result.append(‘’.join(path))
  • 在这里插入图片描述在这里插入图片描述

方法一

下面是我自己写 的

class Solution(object):
    def __init__(self):
        self.map_ = [
            " ",#0
            " ",#1
            "abc",#2
            "def",#3
            "ghi",#4
            "jkl",#5
            "mno",#6
            "pqrs",#7
            "tuv",#8
            "wxyz",#9
        ]
        self.result = []
        self.s = ""
    def backtrace(self,digits,index_):
        if index_ == len(digits):
            self.result.append(self.s)
            return
        for i in self.map_[int(digits[index_])]:
            self.s += i
            self.backtrace(digits,index_+1)
            self.s = self.s[:-1]



    def letterCombinations(self, digits):
        """
        :type digits: str
        :rtype: List[str]
        """
        if len(digits) == 0:
            return self.result
        self.backtrace(digits,0)
        return self.result

方法一2 隐藏回溯

具体方法:self.s不再设为全局变量,而是变成参数每次传进去;
回溯的是时候变成self.backtrace(digits,index_+1,s+letter);这样s就是没有变过的;

class Solution:
    def __init__(self):
        self.letterMap = [
            "",     # 0
            "",     # 1
            "abc",  # 2
            "def",  # 3
            "ghi",  # 4
            "jkl",  # 5
            "mno",  # 6
            "pqrs", # 7
            "tuv",  # 8
            "wxyz"  # 9
        ]
        self.result = []
    
    def getCombinations(self, digits, index, s):
        if index == len(digits):
            self.result.append(s)
            return
        digit = int(digits[index])
        letters = self.letterMap[digit]
        for letter in letters:
            self.getCombinations(digits, index + 1, s + letter)
    
    def letterCombinations(self, digits):
        if len(digits) == 0:
            return self.result
        self.getCombinations(digits, 0, "")
        return self.result

方法一3 不用字符串而是列表来处理

    def getCombinations(self, digits, index, path, result):
        if index == len(digits):
            result.append(''.join(path))
            return
        digit = int(digits[index])
        letters = self.letterMap[digit]
        for letter in letters:
            path.append(letter)
            self.getCombinations(digits, index + 1, path, result)
            path.pop()
    
    def letterCombinations(self, digits):
        result = []
        if len(digits) == 0:
            return result
        self.getCombinations(digits, 0, [], result)
        return result

总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值