S-Trees

                                                           S-Trees

原题链接 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=653

  A Strange Tree (S-tree) over the variable set Xn = {x1, x2, . . . , xn} is a binary tree representing a Boolean function f : {0, 1} n → {0, 1}. Each path of the S-tree begins at the root node and consists of n + 1 nodes. Each of the S-tree’s nodes has a depth, which is the amount of nodes between itself and the root (so the root has depth 0). The nodes with depth less than n are called non-terminal nodes. All non-terminal nodes have two children: the right child and the left child. Each non-terminal node is marked with some variable xi from the variable set Xn. All non-terminal nodes with the same depth are marked with the same variable, and non-terminal nodes with different depth are marked with different variables. So, there is a unique variable xi1 corresponding to the root, a unique variable xi2 corresponding to the nodes with depth 1, and so on. The sequence of the variables xi1 , xi2 , . . ., xin is called the variable ordering. The nodes having depth n are called terminal nodes. They have no children and are marked with either 0 or 1. Note that the variable ordering and the distribution of 0’s and 1’s on terminal nodes are sufficient to completely describe an S-tree.

  As stated earlier, each S-tree represents a Boolean function f. If you have an S-tree and values for the variables x1, x2, . . ., xn, then it is quite simple to find out what f(x1, x2, . . . , xn) is: start with the root. Now repeat the following: if the node you are at is labelled with a variable xi , then depending on whether the value of the variable is 1 or 0, you go its right or left child, respectively. Once you reach a terminal node, its label gives the value of the function.

                             

                                              Figure 1: S-trees for the function x1 ∧ (x2 ∨ x3)

  On the picture, two S-trees representing the same Boolean function, f(x1, x2, x3) = x1 ∧ (x2 ∨ x3), are shown. For the left tree, the variable ordering is x1, x2, x3, and for the right tree it is x3, x1, x2.

  The values of the variables x1, x2, . . ., xn, are given as a Variable Values Assignment (VVA)

                                                        (x1 = b1, x2 = b2, . . . , xn = bn)

with b1, b2, . . . , bn ∈ {0, 1}. For instance, (x1 = 1, x2 = 1, x3 = 0) would be a valid VVA for n = 3, resulting for the sample function above in the value f(1, 1, 0) = 1 ∧ (1 ∨ 0) = 1. The corresponding paths are shown bold in the picture.

  Your task is to write a program which takes an S-tree and some VVAs and computes f(x1, x2, . . . , xn) as described above.

Input

The input file contains the description of several S-trees with associated VVAs which you have to process. Each description begins with a line containing a single integer n, 1 ≤ n ≤ 7, the depth of the S-tree. This is followed by a line describing the variable ordering of the S-tree. The format of that line is xi1 xi2 . . . xin . (There will be exactly n different space-separated strings). So, for n = 3 and the variable ordering x3, x1, x2, this line would look as follows: x3 x1 x2 In the next line the distribution of 0’s and 1’s over the terminal nodes is given. There will be exactly 2 n characters (each of which can be ‘0’ or ‘1’), followed by the new-line character. The characters are given in the order in which they appear in the S-tree, the first character corresponds to the leftmost terminal node of the S-tree, the last one to its rightmost terminal node. The next line contains a single integer m, the number of VVAs, followed by m lines describing them. Each of the m lines contains exactly n characters (each of which can be ‘0’ or ‘1’), followed by a new-line character. Regardless of the variable ordering of the S-tree, the first character always describes the value of x1, the second character describes the value of x2, and so on. So, the line 110 corresponds to the VVA (x1 = 1, x2 = 1, x3 = 0). The input is terminated by a test case starting with n = 0. This test case should not be processed.

Output

For each S-tree, output the line ‘S-Tree #j:’, where j is the number of the S-tree. Then print a line that contains the value of f(x1, x2, . . . , xn) for each of the given m VVAs, where f is the function defined by the S-tree. Output a blank line after each test case.

Sample Input

3 x1 x2 x3 00000111 4 000 010 111 110 3 x3 x1 x2 00010011 4 000 010 111 110 0

Sample Output

S-Tree #1:

0011

S-Tree #2:

0011

给出一棵完整的树,并给出每一层的结点号xi,同一层的结点共用一个号,但结点号并不是按序给出,从第一层到第n层不一定是从x1到xn。给出所有叶子节点的值与路径v1v2v3...Vn。0代表走左子树,1代表走右子树,路径严格分配给x1x2x3...xn,如果第一层的根节点不是x1而是x5或者其他根结点,走的第一步要根据路径的v5或其所对应的根结点来确定左子树还是右子树,输出最后到达的叶子节点的值。

#include<stdio.h>
#include<math.h>
#define N 100
#define MAXN 2000
#define NN 100010

char ch[N],s[MAXN],ss[N][2],str[NN];

int main()
{
    int n,flag=1;
    while(~scanf("%d",&n),n)
    {
        for(int i=0; i<n; i++)
        {
            scanf("%s",ss[i]);
        }
        int m,k=0;
        int l=pow(2.0,n);
        scanf("%s %d",s+l,&m);
        for(int i=0; i<m; i++)
        {
            scanf("%s",ch);
            int num=1;
            for(int j=0; j<n; j++)
            {
                if(ch[ss[j][1]-'0'-1]=='0')
                {
                    num*=2;//左孩子是i*2.
                }
                else
                {
                    num=num*2+1;//右孩子是2*i+1.
                }
            }
            str[k++]=s[num];
        }
        str[k]='\0';
        printf("S-Tree #%d:\n%s\n\n",flag++,str);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值