Leetcode 77.组合
题目链接:Leetcode 77.组合
题目描述:给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合。
思路:第一反应是直接for循环,仔细读题后发现k是未知的,不能确定是多少层嵌套循环,因此可以借助递归,利用回溯的思想最终找到所有的组合。那什么是回溯呢?回溯的本质是暴力,这么说也很抽象。举个例子,我们在玩迷宫游戏的时候,如何找到从起点到终点的一条路线呢?最简单的想法就是走一步看一步,如果遇到岔路口,就按顺序把每个路口都走一遍,遇到死胡同就退回来换一个路口,直到找到终点。其中“遇到死胡同就退回来换一个路口”就是回溯的思想。
回溯法,一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
代码如下:(回溯算法)
class Solution {
public:
vector<vector<int>> result; //存放结果的集合
vector<int> path; //存放单个结果
void backtracking(int n, int k,int startIndex){//第三个参数是为了防止重复遍历
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = startIndex; i <= n; i++) {
path.push_back(i);
backtracking(n, k, i + 1);
path.pop_back(); //回溯,也就是恢复原状
}
}
vector<vector<int>> combine(int n, int k) {
backtracking(n, k, 1);
return result;
}
};
- 时间复杂度: O(n * 2^n)
- 空间复杂度: O(n)
不过我们发现,其实当for循环选择的起始位置之后的元素个数已经不足我们需要的元素个数了,那么就没有必要搜索了。因此可以对上面的代码进行简单的优化,分析过程如下:
(1)已经选择的元素个数:path.size();
(2)所需的元素个数为: k - path.size();
(3)列表中剩余元素(n-i) >= 所需的元素个数(k - path.size())
(4)在集合n中至多要从该起始位置 : i <= n - (k - path.size()) + 1,开始遍历
为什么有个+1呢?因为包括起始位置,我们要是一个左闭的集合。
举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。
代码如下:(优化后的回溯)
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(int n, int k, int startIndex) {
if (path.size() == k) {
result.push_back(path);
return;
}
//k- path.size()表示所需要的元素个数
//集合n中至多要从该起始位置 : i <= n - (k - path.size()) + 1
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { //优化的部分
path.push_back(i);
backtracking(n, k, i + 1);
path.pop_back(); //回溯,也就是恢复原状
}
}
vector<vector<int>> combine(int n, int k) {
backtracking(n, k, 1);
return result;
}
};
总结:今天只有一道题,主要是了解回溯算法的思想。
最后,如果文章有错误,请在评论区或私信指出,让我们共同进步!