命题演算的语构理论
定义
每个形式系统都使用原始的符号(符号的集合称为字符表),通过形成的推理规则,从一组公理中有限地构造一种形式语言
正式的来说,形式系统包含如下四个部分:
1、字符表(symbols)。一组有限的符号,称为字符表,字符用来连接公式,因此公式只是从字符表中提取的有限的符号串。
2、语法(grammar)。语法定义了生成公式的基本规则,如果一个公式被称为符合语法规则(well-formed)的,那么说明这个公式可以用语法规则来生成。
3、一组公理(axioms)。由符合语法规则的公式组成
4、一组推理规则(inference rules)。可以由公理推导出的正确的公式称为形式系统的定理。
形式系统L
命题演算的形式系统L是一个特殊的形式系统
(i)形式系统L的字符表为:
¬
,
→
,
(
,
)
,
P
1
,
P
2
,
.
.
.
\lnot,\rightarrow,(,),P_{1},P_{2},...
¬,→,(,),P1,P2,...
(ii)L的语法规则如下:
1、
p
1
,
p
2
p_{1},p_{2}
p1,p2都是公式
2、若A和B是公式,那么
¬
A
\lnot A
¬A以及
A
→
B
A\rightarrow B
A→B也是公式
3、除了上面的情况,没有别的公式了
(iii)公理:
L
1
:
A
→
(
B
→
A
)
L1:A\rightarrow(B\rightarrow A)
L1:A→(B→A)
L
2
:
(
A
→
(
B
→
C
)
)
→
(
(
A
→
B
)
→
(
A
→
C
)
)
L2:(A\rightarrow(B\rightarrow C))\rightarrow((A\rightarrow B)\rightarrow(A\rightarrow C))
L2:(A→(B→C))→((A→B)→(A→C))
L
3
:
(
¬
A
→
¬
B
)
→
(
B
→
A
)
L3:(\lnot A\rightarrow\lnot B)\rightarrow(B\rightarrow A)
L3:(¬A→¬B)→(B→A)
(iv)推理规则
MP规则:从
A
→
B
A\rightarrow B
A→B与A可以推出B
A
,
A
→
B
B
\dfrac{A,A\rightarrow B}{B}
BA,A→B
L中的证明与定理
定义
设
Γ
⊂
F
(
S
)
\Gamma\subset F(S)
Γ⊂F(S),从
Γ
\Gamma
Γ出发的L中一个推演是一有限公式序列
A
1
,
A
2
,
.
.
.
,
A
n
A_{1},A_{2},...,A_{n}
A1,A2,...,An其中每个
A
i
A_{i}
Ai或是公理,或是
Γ
\Gamma
Γ中成员,或存在左j,k<i使得
A
i
A_{i}
Ai是
A
j
A_{j}
Aj和
A
k
A_{k}
Ak使用MP规则推导的结果。其中最后一项公式
A
n
A_{n}
An称为
Γ
\Gamma
Γ-结论,记作
Γ
L
⊢
A
n
\Gamma_{L}\vdash A_{n}
ΓL⊢An或
Γ
⊢
A
n
\Gamma\vdash A_{n}
Γ⊢An.n叫做证明的长度。
例题:
证明
A
→
(
B
→
(
A
→
B
)
)
A\rightarrow(B\rightarrow (A\rightarrow B))
A→(B→(A→B))
(1)
(
(
B
→
(
A
→
B
)
)
→
(
A
→
(
B
→
(
A
→
B
)
)
)
L
1
((B\rightarrow(A\rightarrow B))\rightarrow(A\rightarrow(B\rightarrow (A\rightarrow B)))\qquad L1
((B→(A→B))→(A→(B→(A→B)))L1
(2)
(
B
→
A
→
B
)
L
1
(B\rightarrow A\rightarrow B)\qquad L1
(B→A→B)L1
(3)
A
→
(
B
→
(
A
→
B
)
)
(
1
)
,
(
2
)
,
M
P
A\rightarrow(B\rightarrow (A\rightarrow B))\qquad (1),(2),MP
A→(B→(A→B))(1),(2),MP
演绎定理
定义
设
Γ
⊂
F
(
S
)
\Gamma\subset F(S)
Γ⊂F(S),从
Γ
\Gamma
Γ出发的L中一个推演是一有限公式序列
A
1
,
A
2
,
.
.
.
,
A
n
A_{1},A_{2},...,A_{n}
A1,A2,...,An其中每个或是公理,或是
Γ
\Gamma
Γ中成员,或存在j,k<i使得
A
i
A_{i}
Ai是
A
j
A_{j}
Aj和
A
k
A_{k}
Ak使用MP规则推导的结果。其中最后一项公式
A
n
A_{n}
An称为
Γ
\Gamma
Γ一结论,记作
Γ
⊢
L
A
n
\Gamma\vdash_{L} A_{n}
Γ⊢LAn或
Γ
⊢
A
n
\Gamma\vdash A_{n}
Γ⊢An. n叫做推演的长度
上面啰嗦一大推,其实就是在推理证明的时候加入了假设 Γ \Gamma Γ这个概念,假设 Γ \Gamma Γ中的公式都是正确的,在这个前提下进行推理证明
演绎定理
设
Γ
⊂
F
(
S
)
,
A
,
B
∈
F
(
S
)
.
则
Γ
∪
{
A
}
⊢
B
当
且
仅
当
Γ
⊢
A
→
B
\Gamma\subset F(S),A,B\in F(S).则\Gamma\cup\{A\}\vdash B当且仅当\Gamma\vdash A\rightarrow B
Γ⊂F(S),A,B∈F(S).则Γ∪{A}⊢B当且仅当Γ⊢A→B
演绎定理常用来简化证明,就是当出现类似于 Γ ⊢ A → B \Gamma\vdash A\rightarrow B Γ⊢A→B时,可以把前面的A放到前面的假设条件里面,直接证明B即可
例题:证明
(
A
→
(
A
→
B
)
)
→
(
A
→
B
)
(A\rightarrow(A\rightarrow B))\rightarrow(A\rightarrow B)
(A→(A→B))→(A→B)
由推演定理可得,要证明
(
A
→
(
A
→
B
)
)
→
(
A
→
B
)
(A\rightarrow(A\rightarrow B))\rightarrow(A\rightarrow B)
(A→(A→B))→(A→B)可以等价为证明
{
A
→
(
A
→
B
,
A
}
⊢
B
\{A\rightarrow(A\rightarrow B, A\}\vdash B
{A→(A→B,A}⊢B
(1)
A
Γ
A\qquad\Gamma
AΓ
(2)
A
→
(
A
→
B
)
Γ
A\rightarrow(A\rightarrow B)\qquad\Gamma
A→(A→B)Γ
(3)
A
→
B
(
1
)
(
2
)
M
P
A\rightarrow B\qquad (1)(2)MP
A→B(1)(2)MP
(4)
B
(
1
)
(
3
)
M
P
B\qquad (1)(3)MP
B(1)(3)MP
可靠性定理
命题逻辑系统L中的定理都是重言式,即若 ⊢ A 则 ⊨ A \vdash A则\vDash A ⊢A则⊨A
完备性定理
命题逻辑系统L中的重言式都是定理,即若 ⊨ A 则 ⊢ A \vDash A则\vdash A ⊨A则⊢A
可证等价
设 A , B ∈ F ( S ) A,B\in F(S) A,B∈F(S),若 ⊢ A → B \vdash A\rightarrow B ⊢A→B且 ⊢ B → A \vdash B\rightarrow A ⊢B→A成立,则称A与B可证等价,记为 A ≈ B A\approx B A≈B
子式替换定理
定理
设A中含有子式
A
1
A_{1}
A1,且
A
1
≈
B
1
A_{1}\approx B_{1}
A1≈B1若A中的一处或多处出现的
A
1
A_{1}
A1换成
B
1
B_{1}
B1所得的公式记为B,则有
A
≈
B
A\approx B
A≈B