软件理论基础学习笔记——形式系统


命题演算的语构理论

定义

每个形式系统都使用原始的符号(符号的集合称为字符表),通过形成的推理规则,从一组公理中有限地构造一种形式语言

正式的来说,形式系统包含如下四个部分:
1、字符表(symbols)。一组有限的符号,称为字符表,字符用来连接公式,因此公式只是从字符表中提取的有限的符号串。
2、语法(grammar)。语法定义了生成公式的基本规则,如果一个公式被称为符合语法规则(well-formed)的,那么说明这个公式可以用语法规则来生成。
3、一组公理(axioms)。由符合语法规则的公式组成
4、一组推理规则(inference rules)。可以由公理推导出的正确的公式称为形式系统的定理。

形式系统L

命题演算的形式系统L是一个特殊的形式系统

(i)形式系统L的字符表为:
¬ , → , ( , ) , P 1 , P 2 , . . . \lnot,\rightarrow,(,),P_{1},P_{2},... ¬,,(,),P1,P2,...

(ii)L的语法规则如下:
1、 p 1 , p 2 p_{1},p_{2} p1p2都是公式
2、若A和B是公式,那么 ¬ A \lnot A ¬A以及 A → B A\rightarrow B AB也是公式
3、除了上面的情况,没有别的公式了

(iii)公理:
L 1 : A → ( B → A ) L1:A\rightarrow(B\rightarrow A) L1:A(BA)
L 2 : ( A → ( B → C ) ) → ( ( A → B ) → ( A → C ) ) L2:(A\rightarrow(B\rightarrow C))\rightarrow((A\rightarrow B)\rightarrow(A\rightarrow C)) L2:(A(BC))((AB)(AC))
L 3 : ( ¬ A → ¬ B ) → ( B → A ) L3:(\lnot A\rightarrow\lnot B)\rightarrow(B\rightarrow A) L3:(¬A¬B)(BA)

(iv)推理规则
MP规则:从 A → B A\rightarrow B AB与A可以推出B
A , A → B B \dfrac{A,A\rightarrow B}{B} BA,AB

L中的证明与定理

定义
Γ ⊂ F ( S ) \Gamma\subset F(S) ΓF(S),从 Γ \Gamma Γ出发的L中一个推演是一有限公式序列 A 1 , A 2 , . . . , A n A_{1},A_{2},...,A_{n} A1,A2,...,An其中每个 A i A_{i} Ai或是公理,或是 Γ \Gamma Γ中成员,或存在左j,k<i使得 A i A_{i} Ai A j A_{j} Aj A k A_{k} Ak使用MP规则推导的结果。其中最后一项公式 A n A_{n} An称为 Γ \Gamma Γ-结论,记作 Γ L ⊢ A n \Gamma_{L}\vdash A_{n} ΓLAn Γ ⊢ A n \Gamma\vdash A_{n} ΓAn.n叫做证明的长度。

例题:
证明 A → ( B → ( A → B ) ) A\rightarrow(B\rightarrow (A\rightarrow B)) A(B(AB))
(1) ( ( B → ( A → B ) ) → ( A → ( B → ( A → B ) ) ) L 1 ((B\rightarrow(A\rightarrow B))\rightarrow(A\rightarrow(B\rightarrow (A\rightarrow B)))\qquad L1 ((B(AB))(A(B(AB)))L1
(2) ( B → A → B ) L 1 (B\rightarrow A\rightarrow B)\qquad L1 (BAB)L1
(3) A → ( B → ( A → B ) ) ( 1 ) , ( 2 ) , M P A\rightarrow(B\rightarrow (A\rightarrow B))\qquad (1),(2),MP A(B(AB))(1),(2),MP

演绎定理

定义
Γ ⊂ F ( S ) \Gamma\subset F(S) ΓF(S),从 Γ \Gamma Γ出发的L中一个推演是一有限公式序列 A 1 , A 2 , . . . , A n A_{1},A_{2},...,A_{n} A1,A2,...,An其中每个或是公理,或是 Γ \Gamma Γ中成员,或存在j,k<i使得 A i A_{i} Ai A j A_{j} Aj A k A_{k} Ak使用MP规则推导的结果。其中最后一项公式 A n A_{n} An称为 Γ \Gamma Γ一结论,记作 Γ ⊢ L A n \Gamma\vdash_{L} A_{n} ΓLAn Γ ⊢ A n \Gamma\vdash A_{n} ΓAn. n叫做推演的长度

上面啰嗦一大推,其实就是在推理证明的时候加入了假设 Γ \Gamma Γ这个概念,假设 Γ \Gamma Γ中的公式都是正确的,在这个前提下进行推理证明

演绎定理
Γ ⊂ F ( S ) , A , B ∈ F ( S ) . 则 Γ ∪ { A } ⊢ B 当 且 仅 当 Γ ⊢ A → B \Gamma\subset F(S),A,B\in F(S).则\Gamma\cup\{A\}\vdash B当且仅当\Gamma\vdash A\rightarrow B ΓF(S),A,BF(S).Γ{A}BΓAB

演绎定理常用来简化证明,就是当出现类似于 Γ ⊢ A → B \Gamma\vdash A\rightarrow B ΓAB时,可以把前面的A放到前面的假设条件里面,直接证明B即可

例题:证明 ( A → ( A → B ) ) → ( A → B ) (A\rightarrow(A\rightarrow B))\rightarrow(A\rightarrow B) (A(AB))(AB)
由推演定理可得,要证明 ( A → ( A → B ) ) → ( A → B ) (A\rightarrow(A\rightarrow B))\rightarrow(A\rightarrow B) (A(AB))(AB)可以等价为证明 { A → ( A → B , A } ⊢ B \{A\rightarrow(A\rightarrow B, A\}\vdash B {A(AB,A}B

(1) A Γ A\qquad\Gamma AΓ
(2) A → ( A → B ) Γ A\rightarrow(A\rightarrow B)\qquad\Gamma A(AB)Γ
(3) A → B ( 1 ) ( 2 ) M P A\rightarrow B\qquad (1)(2)MP AB(1)(2)MP
(4) B ( 1 ) ( 3 ) M P B\qquad (1)(3)MP B(1)(3)MP

可靠性定理

命题逻辑系统L中的定理都是重言式,即若 ⊢ A 则 ⊨ A \vdash A则\vDash A AA

完备性定理

命题逻辑系统L中的重言式都是定理,即若 ⊨ A 则 ⊢ A \vDash A则\vdash A AA

可证等价

A , B ∈ F ( S ) A,B\in F(S) ABF(S),若 ⊢ A → B \vdash A\rightarrow B AB ⊢ B → A \vdash B\rightarrow A BA成立,则称A与B可证等价,记为 A ≈ B A\approx B AB

子式替换定理

定理
设A中含有子式 A 1 A_{1} A1,且 A 1 ≈ B 1 A_{1}\approx B_{1} A1B1若A中的一处或多处出现的 A 1 A_{1} A1换成 B 1 B_{1} B1所得的公式记为B,则有 A ≈ B A\approx B AB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值