降维方法总结

本文总结了多种降维方法,包括低维嵌入的MDS算法,主成分分析(PCA),核化线性降维,流形学习中的Isomap和局部线性嵌入(LLE),以及度量学习和线性判别分析(LDA)。通过对比这些方法,探讨了它们的基本思想、优缺点和应用场景,尤其强调了降维过程中如何保持样本点的距离关系和分类性能。
摘要由CSDN通过智能技术生成

降维方法总结

对降维效果的评价:

比较降维前后学习器的性能

低维可以通过可视化技术来判断降维的效果

 

分类

一、低维嵌入

代表:MDS算法

基本思想:降维的一个基本思想是,降维前后 保证样本点的距离相等,即:原始空间中的距离在低维空间得以保持

MDS算法

1)通过距离不变的原理,推导出由高维空间距离矩阵D计算低维空间样本的内积矩阵B,

2)对B做特征值分解

3)根据特征值分解的结果,计算出样本的低维空间坐标

——可以理解为,这种算法,对高维和低维空间的映射关系没有关注,只是关注了样本点的距离;新的样本点和高维样本点没有关系,只是计算的距离是相等的

——现实中,一般只要求降维后的距离尽可能的接近,不必严格相等

另外

这种算法要求先计算原始空间中所有样本间的距离,获得距离矩阵,如果样本很多,是不是就不适用了?

另外的方法:

一般来说,欲获得低维子空间,最简单的方法是对原始空间做线性变换(矩阵变换的本质就是空间变换)

Z=W*X    W是变换矩阵

——线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值